pytorch 数据加载性能对比分析

传统方式需要10s,dat方式需要0.6s

import os

import time

import torch

import random

from common.coco_dataset import COCODataset

def gen_data(batch_size,data_path,target_path):

os.makedirs(target_path,exist_ok=True)

dataloader = torch.utils.data.DataLoader(COCODataset(data_path,

(352, 352),

is_training=False, is_scene=True),

batch_size=batch_size,

shuffle=False, num_workers=0, pin_memory=False,

drop_last=True) # DataLoader

start = time.time()

for step, samples in enumerate(dataloader):

images, labels, image_paths = samples["image"], samples["label"], samples["img_path"]

print("time", images.size(0), time.time() - start)

start = time.time()

# torch.save(samples,target_path+ '/' + str(step) + '.dat')

print(step)

def cat_100(target_path,batch_size=100):

paths = os.listdir(target_path)

li = [i for i in range(len(paths))]

random.shuffle(li)

images = []

labels = []

image_paths = []

start = time.time()

for i in range(len(paths)):

samples = torch.load(target_path + str(li[i]) + ".dat")

image, label, image_path = samples["image"], samples["label"], samples["img_path"]

images.append(image.cuda())

labels.append(label.cuda())

image_paths.append(image_path)

if i % batch_size == batch_size - 1:

images = torch.cat((images), 0)

print("time", images.size(0), time.time() - start)

images = []

labels = []

image_paths = []

start = time.time()

i += 1

if __name__ == '__main__':

os.environ["CUDA_VISIBLE_DEVICES"] = '3'

batch_size=320

# target_path='d:/test_1000/'

target_path='d:\img_2/'

data_path = r'D:\dataset\origin_all_datas\_2train'

gen_data(batch_size,data_path,target_path)

# get_data(target_path,batch_size)

# cat_100(target_path,batch_size)

这个读取数据也比较快:320 batch_size 450ms

def cat_100(target_path,batch_size=100):

paths = os.listdir(target_path)

li = [i for i in range(len(paths))]

random.shuffle(li)

images = []

labels = []

image_paths = []

start = time.time()

for i in range(len(paths)):

samples = torch.load(target_path + str(li[i]) + ".dat")

image, label, image_path = samples["image"], samples["label"], samples["img_path"]

images.append(image)#.cuda())

labels.append(label)#.cuda())

image_paths.append(image_path)

if i % batch_size < batch_size - 1:

i += 1

continue

i += 1

images = torch.cat(([image.cuda() for image in images]), 0)

print("time", images.size(0), time.time() - start)

images = []

labels = []

image_paths = []

start = time.time()

补充:pytorch数据加载和处理问题解决方案

最近跟着pytorch中文文档学习遇到一些小问题,已经解决,在此对这些错误进行记录:

在读取数据集时报错:

AttributeError: 'Series' object has no attribute 'as_matrix'

在显示图片是时报错:

ValueError: Masked arrays must be 1-D

显示单张图片时figure一闪而过

在显示多张散点图的时候报错:

TypeError: show_landmarks() got an unexpected keyword argument 'image'

解决方案

主要问题在这一行: 最终目的是将Series转为Matrix,即调用np.mat即可完成。

修改前

landmarks =landmarks_frame.iloc[n, 1:].as_matrix()

修改后

landmarks =np.mat(landmarks_frame.iloc[n, 1:])

打散点的x和y坐标应该均为向量或列表,故将landmarks后使用tolist()方法即可

修改前

plt.scatter(landmarks[:,0],landmarks[:,1],s=10,marker='.',c='r')

修改后

plt.scatter(landmarks[:,0].tolist(),landmarks[:,1].tolist(),s=10,marker='.',c='r')

前面使用plt.ion()打开交互模式,则后面在plt.show()之前一定要加上plt.ioff()。这里直接加到函数里面,避免每次plt.show()之前都用plt.ioff()

修改前

def show_landmarks(imgs,landmarks):

'''显示带有地标的图片'''

plt.imshow(imgs)

plt.scatter(landmarks[:,0].tolist(),landmarks[:,1].tolist(),s=10,marker='.',c='r')#打上红色散点

plt.pause(1)#绘图窗口延时

修改后

def show_landmarks(imgs,landmarks):

'''显示带有地标的图片'''

plt.imshow(imgs)

plt.scatter(landmarks[:,0].tolist(),landmarks[:,1].tolist(),s=10,marker='.',c='r')#打上红色散点

plt.pause(1)#绘图窗口延时

plt.ioff()

网上说对于字典类型的sample可通过 **sample的方式获取每个键下的值,但是会报错,于是把输入写的详细一点,就成功了。

修改前

show_landmarks(**sample)

修改后

show_landmarks(sample['image'],sample['landmarks'])

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。

以上是 pytorch 数据加载性能对比分析 的全部内容, 来源链接: utcz.com/z/343911.html

回到顶部