python+matplotlib演示电偶极子实例代码

使用matplotlib.tri.CubicTriInterpolator.演示变化率计算:

完整实例:

from matplotlib.tri import (

Triangulation, UniformTriRefiner, CubicTriInterpolator)

import matplotlib.pyplot as plt

import matplotlib.cm as cm

import numpy as np

#-----------------------------------------------------------------------------

# Electrical potential of a dipole

#-----------------------------------------------------------------------------

def dipole_potential(x, y):

""" The electric dipole potential V """

r_sq = x**2 + y**2

theta = np.arctan2(y, x)

z = np.cos(theta)/r_sq

return (np.max(z) - z) / (np.max(z) - np.min(z))

#-----------------------------------------------------------------------------

# Creating a Triangulation

#-----------------------------------------------------------------------------

# First create the x and y coordinates of the points.

n_angles = 30

n_radii = 10

min_radius = 0.2

radii = np.linspace(min_radius, 0.95, n_radii)

angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)

angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)

angles[:, 1::2] += np.pi / n_angles

x = (radii*np.cos(angles)).flatten()

y = (radii*np.sin(angles)).flatten()

V = dipole_potential(x, y)

# Create the Triangulation; no triangles specified so Delaunay triangulation

# created.

triang = Triangulation(x, y)

# Mask off unwanted triangles.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),

y[triang.triangles].mean(axis=1))

< min_radius)

#-----------------------------------------------------------------------------

# Refine data - interpolates the electrical potential V

#-----------------------------------------------------------------------------

refiner = UniformTriRefiner(triang)

tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3)

#-----------------------------------------------------------------------------

# Computes the electrical field (Ex, Ey) as gradient of electrical potential

#-----------------------------------------------------------------------------

tci = CubicTriInterpolator(triang, -V)

# Gradient requested here at the mesh nodes but could be anywhere else:

(Ex, Ey) = tci.gradient(triang.x, triang.y)

E_norm = np.sqrt(Ex**2 + Ey**2)

#-----------------------------------------------------------------------------

# Plot the triangulation, the potential iso-contours and the vector field

#-----------------------------------------------------------------------------

fig, ax = plt.subplots()

ax.set_aspect('equal')

# Enforce the margins, and enlarge them to give room for the vectors.

ax.use_sticky_edges = False

ax.margins(0.07)

ax.triplot(triang, color='0.8')

levels = np.arange(0., 1., 0.01)

cmap = cm.get_cmap(name='hot', lut=None)

ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap,

linewidths=[2.0, 1.0, 1.0, 1.0])

# Plots direction of the electrical vector field

ax.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm,

units='xy', scale=10., zorder=3, color='blue',

width=0.007, headwidth=3., headlength=4.)

ax.set_title('Gradient plot: an electrical dipole')

plt.show()

总结

以上是 python+matplotlib演示电偶极子实例代码 的全部内容, 来源链接: utcz.com/z/333337.html

回到顶部