pytorch下使用LSTM神经网络写诗实例

在pytorch下,以数万首唐诗为素材,训练双层LSTM神经网络,使其能够以唐诗的方式写诗。

代码结构分为四部分,分别为

1.model.py,定义了双层LSTM模型

2.data.py,定义了从网上得到的唐诗数据的处理方法

3.utlis.py 定义了损失可视化的函数

4.main.py定义了模型参数,以及训练、唐诗生成函数。

参考:电子工业出版社的《深度学习框架PyTorch:入门与实践》第九章

main代码及注释如下

import sys, os

import torch as t

from data import get_data

from model import PoetryModel

from torch import nn

from torch.autograd import Variable

from utils import Visualizer

import tqdm

from torchnet import meter

import ipdb

class Config(object):

data_path = 'data/'

pickle_path = 'tang.npz'

author = None

constrain = None

category = 'poet.tang' #or poet.song

lr = 1e-3

weight_decay = 1e-4

use_gpu = True

epoch = 20

batch_size = 128

maxlen = 125

plot_every = 20

#use_env = True #是否使用visodm

env = 'poety'

#visdom env

max_gen_len = 200

debug_file = '/tmp/debugp'

model_path = None

prefix_words = '细雨鱼儿出,微风燕子斜。'

#不是诗歌组成部分,是意境

start_words = '闲云潭影日悠悠'

#诗歌开始

acrostic = False

#是否藏头

model_prefix = 'checkpoints/tang'

#模型保存路径

opt = Config()

def generate(model, start_words, ix2word, word2ix, prefix_words=None):

'''

给定几个词,根据这几个词接着生成一首完整的诗歌

'''

results = list(start_words)

start_word_len = len(start_words)

# 手动设置第一个词为<START>

# 这个地方有问题,最后需要再看一下

input = Variable(t.Tensor([word2ix['<START>']]).view(1,1).long())

if opt.use_gpu:input=input.cuda()

hidden = None

if prefix_words:

for word in prefix_words:

output,hidden = model(input,hidden)

# 下边这句话是为了把input变成1*1?

input = Variable(input.data.new([word2ix[word]])).view(1,1)

for i in range(opt.max_gen_len):

output,hidden = model(input,hidden)

if i<start_word_len:

w = results[i]

input = Variable(input.data.new([word2ix[w]])).view(1,1)

else:

top_index = output.data[0].topk(1)[1][0]

w = ix2word[top_index]

results.append(w)

input = Variable(input.data.new([top_index])).view(1,1)

if w=='<EOP>':

del results[-1] #-1的意思是倒数第一个

break

return results

def gen_acrostic(model,start_words,ix2word,word2ix, prefix_words = None):

'''

生成藏头诗

start_words : u'深度学习'

生成:

深木通中岳,青苔半日脂。

度山分地险,逆浪到南巴。

学道兵犹毒,当时燕不移。

习根通古岸,开镜出清羸。

'''

results = []

start_word_len = len(start_words)

input = Variable(t.Tensor([word2ix['<START>']]).view(1,1).long())

if opt.use_gpu:input=input.cuda()

hidden = None

index=0 # 用来指示已经生成了多少句藏头诗

# 上一个词

pre_word='<START>'

if prefix_words:

for word in prefix_words:

output,hidden = model(input,hidden)

input = Variable(input.data.new([word2ix[word]])).view(1,1)

for i in range(opt.max_gen_len):

output,hidden = model(input,hidden)

top_index = output.data[0].topk(1)[1][0]

w = ix2word[top_index]

if (pre_word in {u'。',u'!','<START>'} ):

# 如果遇到句号,藏头的词送进去生成

if index==start_word_len:

# 如果生成的诗歌已经包含全部藏头的词,则结束

break

else:

# 把藏头的词作为输入送入模型

w = start_words[index]

index+=1

input = Variable(input.data.new([word2ix[w]])).view(1,1)

else:

# 否则的话,把上一次预测是词作为下一个词输入

input = Variable(input.data.new([word2ix[w]])).view(1,1)

results.append(w)

pre_word = w

return results

def train(**kwargs):

for k,v in kwargs.items():

setattr(opt,k,v) #设置apt里属性的值

vis = Visualizer(env=opt.env)

#获取数据

data, word2ix, ix2word = get_data(opt) #get_data是data.py里的函数

data = t.from_numpy(data)

#这个地方出错了,是大写的L

dataloader = t.utils.data.DataLoader(data,

batch_size = opt.batch_size,

shuffle = True,

num_workers = 1) #在python里,这样写程序可以吗?

#模型定义

model = PoetryModel(len(word2ix), 128, 256)

optimizer = t.optim.Adam(model.parameters(), lr=opt.lr)

criterion = nn.CrossEntropyLoss()

if opt.model_path:

model.load_state_dict(t.load(opt.model_path))

if opt.use_gpu:

model.cuda()

criterion.cuda()

#The tnt.AverageValueMeter measures and returns the average value

#and the standard deviation of any collection of numbers that are

#added to it. It is useful, for instance, to measure the average

#loss over a collection of examples.

#The add() function expects as input a Lua number value, which

#is the value that needs to be added to the list of values to

#average. It also takes as input an optional parameter n that

#assigns a weight to value in the average, in order to facilitate

#computing weighted averages (default = 1).

#The tnt.AverageValueMeter has no parameters to be set at initialization time.

loss_meter = meter.AverageValueMeter()

for epoch in range(opt.epoch):

loss_meter.reset()

for ii,data_ in tqdm.tqdm(enumerate(dataloader)):

#tqdm是python中的进度条

#训练

data_ = data_.long().transpose(1,0).contiguous()

#上边一句话,把data_变成long类型,把1维和0维转置,把内存调成连续的

if opt.use_gpu: data_ = data_.cuda()

optimizer.zero_grad()

input_, target = Variable(data_[:-1,:]), Variable(data_[1:,:])

#上边一句,将输入的诗句错开一个字,形成训练和目标

output,_ = model(input_)

loss = criterion(output, target.view(-1))

loss.backward()

optimizer.step()

loss_meter.add(loss.data[0]) #为什么是data[0]?

#可视化用到的是utlis.py里的函数

if (1+ii)%opt.plot_every ==0:

if os.path.exists(opt.debug_file):

ipdb.set_trace()

vis.plot('loss',loss_meter.value()[0])

# 下面是对目前模型情况的测试,诗歌原文

poetrys = [[ix2word[_word] for _word in data_[:,_iii]]

for _iii in range(data_.size(1))][:16]

#上面句子嵌套了两个循环,主要是将诗歌索引的前十六个字变成原文

vis.text('</br>'.join([''.join(poetry) for poetry in

poetrys]),win = u'origin_poem')

gen_poetries = []

#分别以以下几个字作为诗歌的第一个字,生成8首诗

for word in list(u'春江花月夜凉如水'):

gen_poetry = ''.join(generate(model,word,ix2word,word2ix))

gen_poetries.append(gen_poetry)

vis.text('</br>'.join([''.join(poetry) for poetry in

gen_poetries]), win = u'gen_poem')

t.save(model.state_dict(), '%s_%s.pth' %(opt.model_prefix,epoch))

def gen(**kwargs):

'''

提供命令行接口,用以生成相应的诗

'''

for k,v in kwargs.items():

setattr(opt,k,v)

data, word2ix, ix2word = get_data(opt)

model = PoetryModel(len(word2ix), 128, 256)

map_location = lambda s,l:s

# 上边句子里的map_location是在load里用的,用以加载到指定的CPU或GPU,

# 上边句子的意思是将模型加载到默认的GPU上

state_dict = t.load(opt.model_path, map_location = map_location)

model.load_state_dict(state_dict)

if opt.use_gpu:

model.cuda()

if sys.version_info.major == 3:

if opt.start_words.insprintable():

start_words = opt.start_words

prefix_words = opt.prefix_words if opt.prefix_words else None

else:

start_words = opt.start_words.encode('ascii',\

'surrogateescape').decode('utf8')

prefix_words = opt.prefix_words.encode('ascii',\

'surrogateescape').decode('utf8') if opt.prefix_words else None

start_words = start_words.replace(',',u',')\

.replace('.',u'。')\

.replace('?',u'?')

gen_poetry = gen_acrostic if opt.acrostic else generate

result = gen_poetry(model,start_words,ix2word,word2ix,prefix_words)

print(''.join(result))

if __name__ == '__main__':

import fire

fire.Fire()

以上代码给我一些经验,

1. 了解python的编程方式,如空格、换行等;进一步了解python的各个基本模块;

2. 可能出的错误:函数名写错,大小写,变量名写错,括号不全。

3. 对cuda()的用法有了进一步认识;

4. 学会了调试程序(fire);

5. 学会了训练结果的可视化(visdom);

6. 进一步的了解了LSTM,对深度学习的架构、实现有了宏观把控。

这篇pytorch下使用LSTM神经网络写诗实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 pytorch下使用LSTM神经网络写诗实例 的全部内容, 来源链接: utcz.com/z/352881.html

回到顶部