python/Matplotlib绘制复变函数图像教程

今天发现sympy依赖的库mpmath里也有很多数学函数,其中也有在复平面绘制二维图的函数cplot,具体例子如下

from mpmath import *

def f1(z):

return z

def f2(z):

return z**3

def f3(z):

return (z**4-1)**(1/4)

def f4(z):

return 1/z

def f5(z):

return atan(z)

def f6(z):

return sqrt(z)

cplot(f1)

cplot(f2)

cplot(f3)

cplot(f4)

cplot(f5)

cplot(f6)

参照matlab绘制复变函数的例子,使用python实现绘制复变函数图像,网上还没搜到相关的文章,在这里分享出来供大家学习。

'''

参照matlab绘制复变函数的例子,创建函数cplxgrid,cplxmap,cplxroot

'''

# 1.导入相关库

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import *

# 2.创建函数

def cplxgrid(m):

'''Return polar coordinate complex grid.

Parameters

----------

m: int

Returns

----------

z: ndarray,with shape (m+1)-by-(2*(m+1))

'''

m = m

r = np.arange(0,m).reshape(m,1) / m

theta = np.pi * np.arange(-m,m) / m

z = r * np.exp(1j * theta)

return z

def cplxroot(n=3,m=20):

'''

cplxroot(n): renders the Riemann surface for the n-th root

cplxroot(): renders the Riemann surface for the cube root.

cplxroot(n,m): uses an m-by-m grid. Default m = 20.

Use polar coordinates, (r,theta).

Use polar coordinates, (r,theta).

Parameters

----------

n: n-th root

m: int

Returns

----------

None: Plot the Riemann surface

'''

m = m+1

r = np.arange(0,m).reshape(m,1) / m

theta = np.pi * np.arange(-n * m, n * m) / m

z = r * np.exp(1j * theta)

s = r * (1/n) * np.exp(1j * theta / n)

fig = plt.figure()

ax = fig.add_subplot(111,projection='3d')

# ax.plot_surface(np.real(z),np.imag(z),np.real(s),color = np.imag(s))

ax.plot_surface(np.real(z),np.imag(z),np.real(s),cmap = plt.cm.hsv)

ax.set_xlim((-1,1))

ax.set_ylim((-1,1))

ax.set_xlabel('Real')

ax.set_ylabel('Imag')

ax.set_xticks([])

ax.set_yticks([])

ax.set_zticks([])

ax.set_autoscalez_on(True)#z轴自动缩放

ax.grid('on')

plt.show()

def cplxmap(z,cfun):

'''

Plot a function of a complex variable.

Parameters

----------

z: complex plane

cfun: complex function to plot

Returns

----------

None: Plot the surface of complex function

'''

blue = 0.2

x = np.real(z)

y = np.imag(z)

u = np.real(cfun)

v = np.imag(cfun)

M = np.max(np.max(u))#复变函数实部最大值

m = np.min(np.min(u))#复变函数实部最大值

s = np.ones(z.shape)

fig = plt.figure()

ax = fig.add_subplot(111,projection='3d')

# 投影部分用线框图

surf1 = ax.plot_wireframe(x,y,m*s,cmap=plt.cm.hsv)

surf2 = ax.plot_surface(x,y,u,cmap=plt.cm.hsv)

#绘制复变函数1/z时会出错,ValueError: Axis limits cannot be NaN or Inf

# ax.set_zlim(m, M)

ax.set_xlim((-1,1))

ax.set_ylim((-1,1))

ax.set_xlabel('Real')

ax.set_ylabel('Imag')

ax.set_xticks([])

ax.set_yticks([])

ax.set_zticks([])

ax.set_autoscalez_on(True)#z轴自动缩放

ax.grid('on')

plt.show()

def _test_cplxmap():

'''测试cplxmap函数'''

z = cplxgrid(30)

w1 = z

w2 = z**3

w3 = (z**4-1)**(1/4)

w4 = 1/z

w5 = np.arctan(2*z)

w6 = np.sqrt(z)

w = [w1,w2,w3,w4,w5,w6]

for i in w:

cplxmap(z,i)

def _test_cplxroot():

'''测试cplxroot函数'''

cplxroot(n=2)

cplxroot(n=3)

cplxroot(n=4)

cplxroot(n=5)

if __name__ == '__main__':

_test_cplxmap()

_test_cplxroot()

以上这篇python/Matplotlib绘制复变函数图像教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 python/Matplotlib绘制复变函数图像教程 的全部内容, 来源链接: utcz.com/z/344215.html

回到顶部