基于python神经卷积网络的人脸识别

本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下

1.人脸识别整体设计方案


客_服交互流程图:


2.服务端代码展示

sk = socket.socket()

# s.bind(address) 将套接字绑定到地址。在AF_INET下,以元组(host,port)的形式表示地址。

sk.bind(("172.29.25.11",8007))

# 开始监听传入连接。

sk.listen(True)

while True:

for i in range(100):

# 接受连接并返回(conn,address),conn是新的套接字对象,可以用来接收和发送数据。address是连接客户端的地址。

conn,address = sk.accept()

# 建立图片存储路径

path = str(i+1) + '.jpg'

# 接收图片大小(字节数)

size = conn.recv(1024)

size_str = str(size,encoding="utf-8")

size_str = size_str[2 :]

file_size = int(size_str)

# 响应接收完成

conn.sendall(bytes('finish', encoding="utf-8"))

# 已经接收数据大小 has_size

has_size = 0

# 创建图片并写入数据

f = open(path,"wb")

while True:

# 获取

if file_size == has_size:

break

date = conn.recv(1024)

f.write(date)

has_size += len(date)

f.close()

# 图片缩放

resize(path)

# cut_img(path):图片裁剪成功返回True;失败返回False

if cut_img(path):

yuchuli()

result = test('test.jpg')

conn.sendall(bytes(result,encoding="utf-8"))

else:

print('falue')

conn.sendall(bytes('人眼检测失败,请保持图片眼睛清晰',encoding="utf-8"))

conn.close()

3.图片预处理

1)图片缩放

# 根据图片大小等比例缩放图片

def resize(path):

image=cv2.imread(path,0)

row,col = image.shape

if row >= 2500:

x,y = int(row/5),int(col/5)

elif row >= 2000:

x,y = int(row/4),int(col/4)

elif row >= 1500:

x,y = int(row/3),int(col/3)

elif row >= 1000:

x,y = int(row/2),int(col/2)

else:

x,y = row,col

# 缩放函数

res=cv2.resize(image,(y,x),interpolation=cv2.INTER_CUBIC)

cv2.imwrite(path,res)

2)直方图均衡化和中值滤波

# 直方图均衡化

eq = cv2.equalizeHist(img)

# 中值滤波

lbimg=cv2.medianBlur(eq,3)

3)人眼检测

# -*- coding: utf-8 -*-

# 检测人眼,返回眼睛数据

import numpy as np

import cv2

def eye_test(path):

# 待检测的人脸路径

imagepath = path

# 获取训练好的人脸参数

eyeglasses_cascade = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml')

# 读取图片

img = cv2.imread(imagepath)

# 转为灰度图像

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# 检测并获取人眼数据

eyeglasses = eyeglasses_cascade.detectMultiScale(gray)

# 人眼数为2时返回左右眼位置数据

if len(eyeglasses) == 2:

num = 0

for (e_gx,e_gy,e_gw,e_gh) in eyeglasses:

cv2.rectangle(img,(e_gx,e_gy),(e_gx+int(e_gw/2),e_gy+int(e_gh/2)),(0,0,255),2)

if num == 0:

x1,y1 = e_gx+int(e_gw/2),e_gy+int(e_gh/2)

else:

x2,y2 = e_gx+int(e_gw/2),e_gy+int(e_gh/2)

num += 1

print('eye_test')

return x1,y1,x2,y2

else:

return False

4)人眼对齐并裁剪

# -*- coding: utf-8 -*-

# 人眼对齐并裁剪

# 参数含义:

# CropFace(image, eye_left, eye_right, offset_pct, dest_sz)

# eye_left is the position of the left eye

# eye_right is the position of the right eye

# 比例的含义为:要保留的图像靠近眼镜的百分比,

# offset_pct is the percent of the image you want to keep next to the eyes (horizontal, vertical direction)

# 最后保留的图像的大小。

# dest_sz is the size of the output image

#

import sys,math

from PIL import Image

from eye_test import eye_test

# 计算两个坐标的距离

def Distance(p1,p2):

dx = p2[0]- p1[0]

dy = p2[1]- p1[1]

return math.sqrt(dx*dx+dy*dy)

# 根据参数,求仿射变换矩阵和变换后的图像。

def ScaleRotateTranslate(image, angle, center =None, new_center =None, scale =None, resample=Image.BICUBIC):

if (scale is None)and (center is None):

return image.rotate(angle=angle, resample=resample)

nx,ny = x,y = center

sx=sy=1.0

if new_center:

(nx,ny) = new_center

if scale:

(sx,sy) = (scale, scale)

cosine = math.cos(angle)

sine = math.sin(angle)

a = cosine/sx

b = sine/sx

c = x-nx*a-ny*b

d =-sine/sy

e = cosine/sy

f = y-nx*d-ny*e

return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample)

# 根据所给的人脸图像,眼睛坐标位置,偏移比例,输出的大小,来进行裁剪。

def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)):

# calculate offsets in original image 计算在原始图像上的偏移。

offset_h = math.floor(float(offset_pct[0])*dest_sz[0])

offset_v = math.floor(float(offset_pct[1])*dest_sz[1])

# get the direction 计算眼睛的方向。

eye_direction = (eye_right[0]- eye_left[0], eye_right[1]- eye_left[1])

# calc rotation angle in radians 计算旋转的方向弧度。

rotation =-math.atan2(float(eye_direction[1]),float(eye_direction[0]))

# distance between them # 计算两眼之间的距离。

dist = Distance(eye_left, eye_right)

# calculate the reference eye-width 计算最后输出的图像两只眼睛之间的距离。

reference = dest_sz[0]-2.0*offset_h

# scale factor # 计算尺度因子。

scale =float(dist)/float(reference)

# rotate original around the left eye # 原图像绕着左眼的坐标旋转。

image = ScaleRotateTranslate(image, center=eye_left, angle=rotation)

# crop the rotated image # 剪切

crop_xy = (eye_left[0]- scale*offset_h, eye_left[1]- scale*offset_v) # 起点

crop_size = (dest_sz[0]*scale, dest_sz[1]*scale) # 大小

image = image.crop((int(crop_xy[0]),int(crop_xy[1]),int(crop_xy[0]+crop_size[0]),int(crop_xy[1]+crop_size[1])))

# resize it 重置大小

image = image.resize(dest_sz, Image.ANTIALIAS)

return image

def cut_img(path):

image = Image.open(path)

# 人眼识别成功返回True;否则,返回False

if eye_test(path):

print('cut_img')

# 获取人眼数据

leftx,lefty,rightx,righty = eye_test(path)

# 确定左眼和右眼位置

if leftx > rightx:

temp_x,temp_y = leftx,lefty

leftx,lefty = rightx,righty

rightx,righty = temp_x,temp_y

# 进行人眼对齐并保存截图

CropFace(image, eye_left=(leftx,lefty), eye_right=(rightx,righty), offset_pct=(0.30,0.30), dest_sz=(92,112)).save('test.jpg')

return True

else:

print('falue')

return False

4.用神经卷积网络训练数据

# -*- coding: utf-8 -*-

from numpy import *

import cv2

import tensorflow as tf

# 图片大小

TYPE = 112*92

# 训练人数

PEOPLENUM = 42

# 每人训练图片数

TRAINNUM = 15 #( train_face_num )

# 单人训练人数加测试人数

EACH = 21 #( test_face_num + train_face_num )

# 2维=>1维

def img2vector1(filename):

img = cv2.imread(filename,0)

row,col = img.shape

vector1 = zeros((1,row*col))

vector1 = reshape(img,(1,row*col))

return vector1

# 获取人脸数据

def ReadData(k):

path = 'face_flip/'

train_face = zeros((PEOPLENUM*k,TYPE),float32)

train_face_num = zeros((PEOPLENUM*k,PEOPLENUM))

test_face = zeros((PEOPLENUM*(EACH-k),TYPE),float32)

test_face_num = zeros((PEOPLENUM*(EACH-k),PEOPLENUM))

# 建立42个人的训练人脸集和测试人脸集

for i in range(PEOPLENUM):

# 单前获取人

people_num = i + 1

for j in range(k):

#获取图片路径

filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg'

#2维=>1维

img = img2vector1(filename)

#train_face:每一行为一幅图的数据;train_face_num:储存每幅图片属于哪个人

train_face[i*k+j,:] = img/255

train_face_num[i*k+j,people_num-1] = 1

for j in range(k,EACH):

#获取图片路径

filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg'

#2维=>1维

img = img2vector1(filename)

# test_face:每一行为一幅图的数据;test_face_num:储存每幅图片属于哪个人

test_face[i*(EACH-k)+(j-k),:] = img/255

test_face_num[i*(EACH-k)+(j-k),people_num-1] = 1

return train_face,train_face_num,test_face,test_face_num

# 获取训练和测试人脸集与对应lable

train_face,train_face_num,test_face,test_face_num = ReadData(TRAINNUM)

# 计算测试集成功率

def compute_accuracy(v_xs, v_ys):

global prediction

y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})

correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})

return result

# 神经元权重

def weight_variable(shape):

initial = tf.truncated_normal(shape, stddev=0.1)

return tf.Variable(initial)

# 神经元偏置

def bias_variable(shape):

initial = tf.constant(0.1, shape=shape)

return tf.Variable(initial)

# 卷积

def conv2d(x, W):

# stride [1, x_movement, y_movement, 1]

# Must have strides[0] = strides[3] = 1

return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# 最大池化,x,y步进值均为2

def max_pool_2x2(x):

# stride [1, x_movement, y_movement, 1]

return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

# define placeholder for inputs to network

xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92

ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出

keep_prob = tf.placeholder(tf.float32)

x_image = tf.reshape(xs, [-1, 112, 92, 1])

# print(x_image.shape) # [n_samples, 112,92,1]

# 第一层卷积层

W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32

b_conv1 = bias_variable([32])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32

h_pool1 = max_pool_2x2(h_conv1) # output size 56x46x64

# 第二层卷积层

W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64

h_pool2 = max_pool_2x2(h_conv2) # output size 28x23x64

# 第一层神经网络全连接层

W_fc1 = weight_variable([28*23*64, 1024])

b_fc1 = bias_variable([1024])

# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64]

h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64])

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 第二层神经网络全连接层

W_fc2 = weight_variable([1024, PEOPLENUM])

b_fc2 = bias_variable([PEOPLENUM])

prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2))

# 交叉熵损失函数

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = tf.matmul(h_fc1_drop, W_fc2)+b_fc2, labels=ys))

regularizers = tf.nn.l2_loss(W_fc1) + tf.nn.l2_loss(b_fc1) +tf.nn.l2_loss(W_fc2) + tf.nn.l2_loss(b_fc2)

# 将正则项加入损失函数

cost += 5e-4 * regularizers

# 优化器优化误差值

train_step = tf.train.AdamOptimizer(1e-4).minimize(cost)

sess = tf.Session()

init = tf.global_variables_initializer()

saver = tf.train.Saver()

sess.run(init)

# 训练1000次,每50次输出测试集测试结果

for i in range(1000):

sess.run(train_step, feed_dict={xs: train_face, ys: train_face_num, keep_prob: 0.5})

if i % 50 == 0:

print(sess.run(prediction[0],feed_dict= {xs: test_face,ys: test_face_num,keep_prob: 1}))

print(compute_accuracy(test_face,test_face_num))

# 保存训练数据

save_path = saver.save(sess,'my_data/save_net.ckpt')

5.用神经卷积网络测试数据

# -*- coding: utf-8 -*-

# 两层神经卷积网络加两层全连接神经网络

from numpy import *

import cv2

import tensorflow as tf

# 神经网络最终输出个数

PEOPLENUM = 42

# 2维=>1维

def img2vector1(img):

row,col = img.shape

vector1 = zeros((1,row*col),float32)

vector1 = reshape(img,(1,row*col))

return vector1

# 神经元权重

def weight_variable(shape):

initial = tf.truncated_normal(shape, stddev=0.1)

return tf.Variable(initial)

# 神经元偏置

def bias_variable(shape):

initial = tf.constant(0.1, shape=shape)

return tf.Variable(initial)

# 卷积

def conv2d(x, W):

# stride [1, x_movement, y_movement, 1]

# Must have strides[0] = strides[3] = 1

return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# 最大池化,x,y步进值均为2

def max_pool_2x2(x):

# stride [1, x_movement, y_movement, 1]

return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

# define placeholder for inputs to network

xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92

ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出

keep_prob = tf.placeholder(tf.float32)

x_image = tf.reshape(xs, [-1, 112, 92, 1])

# print(x_image.shape) # [n_samples, 112,92,1]

# 第一层卷积层

W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32

b_conv1 = bias_variable([32])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32

h_pool1 = max_pool_2x2(h_conv1) # output size 56x46x64

# 第二层卷积层

W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64

h_pool2 = max_pool_2x2(h_conv2) # output size 28x23x64

# 第一层神经网络全连接层

W_fc1 = weight_variable([28*23*64, 1024])

b_fc1 = bias_variable([1024])

# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64]

h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64])

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 第二层神经网络全连接层

W_fc2 = weight_variable([1024, PEOPLENUM])

b_fc2 = bias_variable([PEOPLENUM])

prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2))

sess = tf.Session()

init = tf.global_variables_initializer()

# 下载训练数据

saver = tf.train.Saver()

saver.restore(sess,'my_data/save_net.ckpt')

# 返回签到人名

def find_people(people_num):

if people_num == 41:

return '任童霖'

elif people_num == 42:

return 'LZT'

else:

return 'another people'

def test(path):

# 获取处理后人脸

img = cv2.imread(path,0)/255

test_face = img2vector1(img)

print('true_test')

# 计算输出比重最大的人及其所占比重

prediction1 = sess.run(prediction,feed_dict={xs:test_face,keep_prob:1})

prediction1 = prediction1[0].tolist()

people_num = prediction1.index(max(prediction1))+1

result = max(prediction1)/sum(prediction1)

print(result,find_people(people_num))

# 神经网络输出最大比重大于0.5则匹配成功

if result > 0.50:

# 保存签到数据

qiandaobiao = load('save.npy')

qiandaobiao[people_num-1] = 1

save('save.npy',qiandaobiao)

# 返回 人名+签到成功

print(find_people(people_num) + '已签到')

result = find_people(people_num) + ' 签到成功'

else:

result = '签到失败'

return result

神经卷积网络入门简介

以上是 基于python神经卷积网络的人脸识别 的全部内容, 来源链接: utcz.com/z/342312.html

回到顶部