Tensorflow卷积神经网络实例进阶

在Tensorflow卷积神经网络实例这篇博客中,我们实现了一个简单的卷积神经网络,没有复杂的Trick。接下来,我们将使用CIFAR-10数据集进行训练。

CIFAR-10是一个经典的数据集,包含60000张32*32的彩色图像,其中训练集50000张,测试集10000张。CIFAR-10如同其名字,一共标注为10类,每一类图片6000张。

本文实现了进阶的卷积神经网络来解决CIFAR-10分类问题,我们使用了一些新的技巧:

  1. 对weights进行了L2的正则化
  2. 对图片进行了翻转、随机剪切等数据增强,制造了更多样本
  3. 在每个卷积-最大池化层后面使用了LRN(局部响应归一化层),增强了模型的泛化能力

首先需要下载Tensorflow models Tensorflow models,以便使用其中的CIFAR-10数据的类.进入目录models/tutorials/image/cifar10目录,执行以下代码

import cifar10

import cifar10_input

import tensorflow as tf

import numpy as np

import time

# 定义batch_size, 训练轮数max_steps, 以及下载CIFAR-10数据的默认路径

max_steps = 3000

batch_size = 128

data_dir = 'E:\\tmp\cifar10_data\cifar-10-batches-bin'

# 定义初始化weight的函数,定义的同时,对weight加一个L2 loss,放在集'losses'中

def variable_with_weight_loss(shape, stddev, w1):

var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))

if w1 is not None:

weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name='weight_loss')

tf.add_to_collection('losses', weight_loss)

return var

# 使用cifar10类下载数据集,并解压、展开到其默认位置

#cifar10.maybe_download_and_extract()

# 在使用cifar10_input类中的distorted_inputs函数产生训练需要使用的数据。需要注意的是,返回的是已经封装好的tensor,

# 且对数据进行了Data Augmentation(水平翻转、随机剪切、设置随机亮度和对比度、对数据进行标准化)

images_train, labels_train = cifar10_input.distorted_inputs(data_dir=data_dir, batch_size=batch_size)

# 再使用cifar10_input.inputs函数生成测试数据,这里不需要进行太多处理

images_test, labels_test = cifar10_input.inputs(eval_data=True,

data_dir=data_dir,

batch_size=batch_size)

# 创建数据的placeholder

image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])

label_holder = tf.placeholder(tf.int32, [batch_size])

# 创建第一个卷积层

weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2,

w1=0.0)

kernel1 = tf.nn.conv2d(image_holder, weight1, strides=[1, 1, 1, 1], padding='SAME')

bias1 = tf.Variable(tf.constant(0.0, shape=[64]))

conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))

pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding='SAME')

# LRN层对ReLU会比较有用,但不适合Sigmoid这种有固定边界并且能抑制过大值的激活函数

norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)

# 创建第二个卷积层

weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2,

w1=0.0)

kernel2 = tf.nn.conv2d(norm1, weight2, strides=[1, 1, 1, 1], padding='SAME')

bias2 = tf.Variable(tf.constant(0.1, shape=[64]))

conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))

norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)

pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding='SAME')

# 使用一个全连接层

reshape = tf.reshape(pool2, [batch_size, -1])

dim = reshape.get_shape()[1].value

weight3 = variable_with_weight_loss(shape=[dim, 384], stddev=0.04, w1=0.004)

bias3 = tf.Variable(tf.constant(0.1, shape=[384]))

local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)

# 再使用一个全连接层,隐含节点数下降了一半,只有192个,其他的超参数保持不变

weight4 = variable_with_weight_loss(shape=[384, 192], stddev=0.04, w1=0.004)

bias4 = tf.Variable(tf.constant(0.1, shape=[192]))

local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)

# 最后一层,将softmax放在了计算loss部分

weight5 = variable_with_weight_loss(shape=[192, 10], stddev=1 / 192.0, w1=0.0)

bias5 = tf.Variable(tf.constant(0.0, shape=[10]))

logits = tf.add(tf.matmul(local4, weight5), bias5)

# 定义loss

def loss(logits, labels):

labels = tf.cast(labels, tf.int64)

cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,

name='cross_entropy_per_example')

cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')

tf.add_to_collection('losses', cross_entropy_mean)

return tf.add_n(tf.get_collection('losses'), name='total_loss')

# 获取最终的loss

loss = loss(logits, label_holder)

# 优化器

train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)

# 使用tf.nn.in_top_k函数求输出结果中top k的准确率,默认使用top 1,也就是输出分数最高的那一类的准确率

top_k_op = tf.nn.in_top_k(logits, label_holder, 1)

# 使用tf.InteractiveSession创建默认的session,接着初始化全部模型参数

sess = tf.InteractiveSession()

tf.global_variables_initializer().run()

# 启动图片数据增强线程

tf.train.start_queue_runners()

# 正式开始训练

for step in range(max_steps):

start_time = time.time()

image_batch, label_batch = sess.run([images_train, labels_train])

_, loss_value = sess.run([train_op, loss], feed_dict={image_holder: image_batch, label_holder: label_batch})

duration = time.time() - start_time

if step % 10 == 0:

example_per_sec = batch_size / duration

sec_per_batch = float(duration)

format_str = 'step %d, loss=%.2f ,%.1f examples/sec, %.3f sec/batch'

print(format_str % (step, loss_value, example_per_sec, sec_per_batch))

num_examples = 10000

import math

num_iter = int(math.ceil(num_examples / batch_size))

true_count = 0

total_sample_count = num_iter * batch_size

step = 0

while step < num_iter:

image_batch, label_batch = sess.run([images_test, labels_test])

predictions = sess.run([top_k_op], feed_dict={image_holder: image_batch, label_holder: label_holder})

true_count += np.sum(predictions)

step += 1

precision = true_count / total_sample_count

print('precision @ 1 = %.3f'%precision)

运行结果:

以上是 Tensorflow卷积神经网络实例进阶 的全部内容, 来源链接: utcz.com/z/342313.html

回到顶部