OpenCV + MFC实现简单人脸识别

用VS2010 + OpenCV 2.4.9 实现简单人脸识别,供大家参考,具体内容如下

首先放效果图(为了防止辣眼睛,后期处理了下):

首先声明,我是在参考其他文章的基础上实现的。

切入正题:

1 设置控件

首先新建一个基于Dialog的MFC程序的工程,工程名为FaceDetect ;

然后在IDD_FACEDETECT_DIALOG对话框中添加一个Picture 控件,ID命名为:IDC_PICTURE;添加一个Button控件,Caption命名为 “检测”,ID命名为IDC_START,将原来自动生成的的OK按钮的Caption改为“退出”;

删除原来的Text控件和“Cancel”控件。

2 定义变量

在FaceDetectDlg.h开头添加以下几行代码

#pragma once

#include "opencv2/objdetect/objdetect.hpp"

#include "opencv2/highgui/highgui.hpp"

#include "opencv2/imgproc/imgproc.hpp”

using namespace std;

using namespace cv;

然后在CFaceDetectDlg类定义一下几个变量

public:

String face_cascade_name;

String eyes_cascade_name;

CascadeClassifier face_cascade;

CascadeClassifier eyes_cascade;

VideoCapture capture;

3 对定义的变量初始化

CFaceDetectDlg::CFaceDetectDlg(CWnd* pParent /*=NULL*/)

: CDialogEx(CFaceDetectDlg::IDD, pParent)

{

m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

string face_cascade_name = "";

string eyes_cascade_name = "";

}

BOOL CFaceDetectDlg::OnInitDialog()

{

CDialogEx::OnInitDialog();

// Add "About..." menu item to system menu.

// IDM_ABOUTBOX must be in the system command range.

ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);

ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);

if (pSysMenu != NULL)

{

BOOL bNameValid;

CString strAboutMenu;

bNameValid = strAboutMenu.LoadString(IDS_ABOUTBOX);

ASSERT(bNameValid);

if (!strAboutMenu.IsEmpty())

{

pSysMenu->AppendMenu(MF_SEPARATOR);

pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);

}

}

// Set the icon for this dialog. The framework does this automatically

// when the application's main window is not a dialog

SetIcon(m_hIcon, TRUE); // Set big icon

SetIcon(m_hIcon, FALSE); // Set small icon

// TODO: Add extra initialization here

string face_cascade_name = "..\\debug\\haarcascade_frontalface_alt.xml";

string eyes_cascade_name = "..\\debug\\haarcascade_eye_tree_eyeglasses.xml";

if( !face_cascade.load( face_cascade_name ) )

{

MessageBox(_T("haarcascade_frontalface_alt.xml Error loading"));

return -1;

};

if( !eyes_cascade.load( eyes_cascade_name ) )

{

MessageBox(_T(" haarcascade_eye_tree_eyeglasses.xmlError loading"));

return -1;

};

return TRUE; // return TRUE unless you set the focus to a control

}

4 检测函数的编写

思路是这样的:

1.首先打开摄像头

2.然后将摄像托获取的图像传递给人脸识别的函数

3.将识别后处理过的图像在Picture控件中显示出来

双击IDD_FACEDETECT_DIALOG对话框上的上的“检测”按钮控件,进入控件函数编写的地方,该函数如下所示:

void CFaceDetectDlg::OnBnClickedStart()

{

// TODO: Add your control notification handler code here

capture.open(0);//捕获外部摄像头,如果只有一个摄像头,就填0

Mat frame;

namedWindow("view", WINDOW_AUTOSIZE);

HWND hWnd = (HWND)cvGetWindowHandle("view");

HWND hParent = ::GetParent(hWnd);

::SetParent(hWnd, GetDlgItem(IDC_PICTURE)->m_hWnd);

::ShowWindow(hParent, SW_HIDE);//隐藏运行程序框,并且把它“画”到MFC上

if (capture.isOpened())

{

for (;;)//循环以达到视频的效果

{

capture >> frame;

if (!frame.empty())

{

detectAndDisplay(frame);//识别的函数

imshow("view", frame);

UpdateData(FALSE);

}

else

{

//::AfxMessageBox(" --(!) No captured frame -- Break!");

continue;

//break;

}

waitKey(10);

}

}

}

以上代码中 detectAndDisplay(frame)语句表示调用了 detectAndDisplay(Mat frame)函数,因此我们得声明和定义该函数。

在CFaceDetectDlg类的头文件FaceDetectDlg.h中声明该函数:

void detectAndDisplay(Mat frame);//声明函数

在FaceDetectDlg.cpp中定义该函数:

void CFaceDetectDlg::detectAndDisplay( Mat frame )

{

std::vector<Rect> faces;

Mat frame_gray;

cvtColor( frame, frame_gray, CV_BGR2GRAY );

equalizeHist( frame_gray, frame_gray );

//-- 多尺寸检测人脸

face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) );

for( int i = 0; i < faces.size(); i++ )

{

Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 );

ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 );

Mat faceROI = frame_gray( faces[i] );

std::vector<Rect> eyes;

//-- 在每张人脸上检测双眼

eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) );

for( int j = 0; j < eyes.size(); j++ )

{

Point center( faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5 );

int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 );

circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 );

}

}

}

编译运行

编译工程,然后将

haarcascade_frontalface_alt.xml 和 haarcascade_eye_tree_eyeglasses.xml拷贝到工程目录文件下Debug文件夹里,也就是可执行文件所在的那个文件夹。

以上基本上可以实现预期的人脸识别功能,可是我们可以发现此时点击“退出”按钮时,摄像头的灯还亮着,那是因为摄像头在程序退出后没有关闭掉,因此还得添加代码关闭摄像头。

双击“退出”按钮,编辑代码如下

void CFaceDetectDlg::OnBnClickedOk()

{

// TODO: Add your control notification handler code here

capture.release(); //关闭摄像头

CDialogEx::OnOK();

}

后记

以后我将把这个工程的代码公布在我的Github上,希望能对其他人有所帮助。

代码已上传至 :MFC-OpenCV-

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

以上是 OpenCV + MFC实现简单人脸识别 的全部内容, 来源链接: utcz.com/p/244528.html

回到顶部