Python聚类算法之凝聚层次聚类实例分析

本文实例讲述了Python聚类算法之凝聚层次聚类。分享给大家供大家参考,具体如下:

凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇。另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并。对于这里的“最接近”,有下面三种定义。我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行:

单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离。

全链(MAX):定义簇的邻近度为不同两个簇的两个最远的点之间的距离。

组平均:定义簇的邻近度为取自两个不同簇的所有点对邻近度的平均值。

# scoding=utf-8

# Agglomerative Hierarchical Clustering(AHC)

import pylab as pl

from operator import itemgetter

from collections import OrderedDict,Counter

points = [[int(eachpoint.split('#')[0]), int(eachpoint.split('#')[1])] for eachpoint in open("points","r")]

# 初始时每个点指派为单独一簇

groups = [idx for idx in range(len(points))]

# 计算每个点对之间的距离

disP2P = {}

for idx1,point1 in enumerate(points):

for idx2,point2 in enumerate(points):

if (idx1 < idx2):

distance = pow(abs(point1[0]-point2[0]),2) + pow(abs(point1[1]-point2[1]),2)

disP2P[str(idx1)+"#"+str(idx2)] = distance

# 按距离降序将各个点对排序

disP2P = OrderedDict(sorted(disP2P.iteritems(), key=itemgetter(1), reverse=True))

# 当前有的簇个数

groupNum = len(groups)

# 过分合并会带入噪音点的影响,当簇数减为finalGroupNum时,停止合并

finalGroupNum = int(groupNum*0.1)

while groupNum > finalGroupNum:

# 选取下一个距离最近的点对

twopoins,distance = disP2P.popitem()

pointA = int(twopoins.split('#')[0])

pointB = int(twopoins.split('#')[1])

pointAGroup = groups[pointA]

pointBGroup = groups[pointB]

# 当前距离最近两点若不在同一簇中,将点B所在的簇中的所有点合并到点A所在的簇中,此时当前簇数减1

if(pointAGroup != pointBGroup):

for idx in range(len(groups)):

if groups[idx] == pointBGroup:

groups[idx] = pointAGroup

groupNum -= 1

# 选取规模最大的3个簇,其他簇归为噪音点

wantGroupNum = 3

finalGroup = Counter(groups).most_common(wantGroupNum)

finalGroup = [onecount[0] for onecount in finalGroup]

dropPoints = [points[idx] for idx in range(len(points)) if groups[idx] not in finalGroup]

# 打印规模最大的3个簇中的点

group1 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[0]]

group2 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[1]]

group3 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[2]]

pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')

pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')

pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')

# 打印噪音点,黑色

pl.plot([eachpoint[0] for eachpoint in dropPoints], [eachpoint[1] for eachpoint in dropPoints], 'ok')

pl.show()

运行效果截图如下:

希望本文所述对大家Python程序设计有所帮助。

以上是 Python聚类算法之凝聚层次聚类实例分析 的全部内容, 来源链接: utcz.com/z/334217.html

回到顶部