Tensorflow 卷积的梯度反向传播过程
一. valid卷积的梯度
我们分两种不同的情况讨论valid卷积的梯度:第一种情况,在已知卷积核的情况下,对未知张量求导(即对张量中每一个变量求导);第二种情况,在已知张量的情况下,对未知卷积核求导(即对卷积核中每一个变量求导)
1.已知卷积核,对未知张量求导
我们用一个简单的例子理解valid卷积的梯度反向传播。假设有一个3x3的未知张量x,以及已知的2x2的卷积核K
Tensorflow提供函数tf.nn.conv2d_backprop_input实现了valid卷积中对未知变量的求导,以上示例对应的代码如下:
import tensorflow as tf
# 卷积核
kernel=tf.constant(
[
[[[3]],[[4]]],
[[[5]],[[6]]]
]
,tf.float32
)
# 某一函数针对sigma的导数
out=tf.constant(
[
[
[[-1],[1]],
[[2],[-2]]
]
]
,tf.float32
)
# 针对未知变量的导数的方向计算
inputValue=tf.nn.conv2d_backprop_input((1,3,3,1),kernel,out,[1,1,1,1],'VALID')
session=tf.Session()
print(session.run(inputValue))
[[[[ -3.]
[ -1.]
[ 4.]]
[[ 1.]
[ 1.]
[ -2.]]
[[ 10.]
[ 2.]
[-12.]]]]
2.已知输入张量,对未知卷积核求导
假设已知3行3列的张量x和未知的2行2列的卷积核K
Tensorflow提供函数tf.nn.conv2d_backprop_filter实现valid卷积对未知卷积核的求导,以上示例的代码如下:
import tensorflow as tf
# 输入张量
x=tf.constant(
[
[
[[1],[2],[3]],
[[4],[5],[6]],
[[7],[8],[9]]
]
]
,tf.float32
)
# 某一个函数F对sigma的导数
partial_sigma=tf.constant(
[
[
[[-1],[-2]],
[[-3],[-4]]
]
]
,tf.float32
)
# 某一个函数F对卷积核k的导数
partial_sigma_k=tf.nn.conv2d_backprop_filter(x,(2,2,1,1),partial_sigma,[1,1,1,1],'VALID')
session=tf.Session()
print(session.run(partial_sigma_k))
[[[[-37.]]
[[-47.]]]
[[[-67.]]
[[-77.]]]]
二. same卷积的梯度
1.已知卷积核,对输入张量求导
假设有3行3列的已知张量x,2行2列的未知卷积核K
import tensorflow as tf
# 卷积核
kernel=tf.constant(
[
[[[3]],[[4]]],
[[[5]],[[6]]]
]
,tf.float32
)
# 某一函数针对sigma的导数
partial_sigma=tf.constant(
[
[
[[-1],[1],[3]],
[[2],[-2],[-4]],
[[-3],[4],[1]]
]
]
,tf.float32
)
# 针对未知变量的导数的方向计算
partial_x=tf.nn.conv2d_backprop_input((1,3,3,1),kernel,partial_sigma,[1,1,1,1],'SAME')
session=tf.Session()
print(session.run(inputValue))
[[[[ -3.]
[ -1.]
[ 4.]]
[[ 1.]
[ 1.]
[ -2.]]
[[ 10.]
[ 2.]
[-12.]]]]
2.已知输入张量,对未知卷积核求导
假设已知3行3列的张量x和未知的2行2列的卷积核K
import tensorflow as tf
# 卷积核
x=tf.constant(
[
[
[[1],[2],[3]],
[[4],[5],[6]],
[[7],[8],[9]]
]
]
,tf.float32
)
# 某一函数针对sigma的导数
partial_sigma=tf.constant(
[
[
[[-1],[-2],[1]],
[[-3],[-4],[2]],
[[-2],[1],[3]]
]
]
,tf.float32
)
# 针对未知变量的导数的方向计算
partial_sigma_k=tf.nn.conv2d_backprop_filter(x,(2,2,1,1),partial_sigma,[1,1,1,1],'SAME')
session=tf.Session()
print(session.run(partial_sigma_k))
[[[[ -1.]]
[[-54.]]]
[[[-43.]]
[[-77.]]]]
以上这篇Tensorflow 卷积的梯度反向传播过程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
以上是 Tensorflow 卷积的梯度反向传播过程 的全部内容, 来源链接: utcz.com/z/312158.html