使用pcolor在matplotlib中进行热图绘制?

我想制作一个像这样的热图(显示在FlowingData上): 热图

源数据在这里,但是可以使用随机数据和标签,即

import numpy

column_labels = list('ABCD')

row_labels = list('WXYZ')

data = numpy.random.rand(4,4)

matplotlib中制作热图非常简单:

from matplotlib import pyplot as plt

heatmap = plt.pcolor(data)

我什至发现了一个看起来正确的colormap参数:heatmap = plt.pcolor(data, cmap=matplotlib.cm.Blues)

但是除此之外,我不知道如何显示列和行的标签以及如何以正确的方向显示数据(起源在左上角而不是左下角)。

尝试操作heatmap.axes(例如heatmap.axes.set_xticklabels = column_labels)都失败了。我在这里想念什么?

回答:

这很晚了,但是这是我对flowingdata NBA热图的python实现。

已更新:2014/1/4:谢谢大家

# -*- coding: utf-8 -*-

# <nbformat>3.0</nbformat>

# ------------------------------------------------------------------------

# Filename : heatmap.py

# Date : 2013-04-19

# Updated : 2014-01-04

# Author : @LotzJoe >> Joe Lotz

# Description: My attempt at reproducing the FlowingData graphic in Python

# Source : http://flowingdata.com/2010/01/21/how-to-make-a-heatmap-a-quick-and-easy-solution/

#

# Other Links:

# http://stackoverflow.com/questions/14391959/heatmap-in-matplotlib-with-pcolor

#

# ------------------------------------------------------------------------

import matplotlib.pyplot as plt

import pandas as pd

from urllib2 import urlopen

import numpy as np

%pylab inline

page = urlopen("http://datasets.flowingdata.com/ppg2008.csv")

nba = pd.read_csv(page, index_col=0)

# Normalize data columns

nba_norm = (nba - nba.mean()) / (nba.max() - nba.min())

# Sort data according to Points, lowest to highest

# This was just a design choice made by Yau

# inplace=False (default) ->thanks SO user d1337

nba_sort = nba_norm.sort('PTS', ascending=True)

nba_sort['PTS'].head(10)

# Plot it out

fig, ax = plt.subplots()

heatmap = ax.pcolor(nba_sort, cmap=plt.cm.Blues, alpha=0.8)

# Format

fig = plt.gcf()

fig.set_size_inches(8, 11)

# turn off the frame

ax.set_frame_on(False)

# put the major ticks at the middle of each cell

ax.set_yticks(np.arange(nba_sort.shape[0]) + 0.5, minor=False)

ax.set_xticks(np.arange(nba_sort.shape[1]) + 0.5, minor=False)

# want a more natural, table-like display

ax.invert_yaxis()

ax.xaxis.tick_top()

# Set the labels

# label source:https://en.wikipedia.org/wiki/Basketball_statistics

labels = [

'Games', 'Minutes', 'Points', 'Field goals made', 'Field goal attempts', 'Field goal percentage', 'Free throws made', 'Free throws attempts', 'Free throws percentage',

'Three-pointers made', 'Three-point attempt', 'Three-point percentage', 'Offensive rebounds', 'Defensive rebounds', 'Total rebounds', 'Assists', 'Steals', 'Blocks', 'Turnover', 'Personal foul']

# note I could have used nba_sort.columns but made "labels" instead

ax.set_xticklabels(labels, minor=False)

ax.set_yticklabels(nba_sort.index, minor=False)

# rotate the

plt.xticks(rotation=90)

ax.grid(False)

# Turn off all the ticks

ax = plt.gca()

for t in ax.xaxis.get_major_ticks():

t.tick1On = False

t.tick2On = False

for t in ax.yaxis.get_major_ticks():

t.tick1On = False

t.tick2On = False

输出如下: 类流动数据的NBA热图

这里有一个IPython的笔记本用这些代码在这里。我从“溢出”中学到了很多东西,所以希望有人会发现它有用。

以上是 使用pcolor在matplotlib中进行热图绘制? 的全部内容, 来源链接: utcz.com/qa/420343.html

回到顶部