Matplotlib渲染所有内部体素(带有Alpha)

我想在matplotlib中渲染一个卷。该体积是一个简单的7x7x7多维数据集,并且我希望能够看到所有内部体素(即使我知道它看起来像一团糟)。

在此处输入图片说明我已经能够渲染透明的体素,但是似乎从未绘制过表面上没有的任何体素。

该卷的每个7x7切片应如下所示:

在此处输入图片说明

我汇集了MWE

以下代码使用5x5的红色,绿色,蓝色,黄色和青色层创建5x5x5的体积。每层的Alpha设置为.5,因此整个过程应该是透明的。

然后,我将所有非表面体素的颜色更改为带有alpha 1的黑色,因此如果显示出来,我们应该能够在中心看到一个黑框。

单独渲染它会产生左侧的图形,但是如果我们从青色层中删除填充,我们可以看到黑框确实存在,只是没有显示它,因为即使那些遮盖了体素的遮盖物也被100%遮盖了alpha小于1。

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D # NOQA

spatial_axes = [5, 5, 5]

filled = np.ones(spatial_axes, dtype=np.bool)

colors = np.empty(spatial_axes + [4], dtype=np.float32)

alpha = .5

colors[0] = [1, 0, 0, alpha]

colors[1] = [0, 1, 0, alpha]

colors[2] = [0, 0, 1, alpha]

colors[3] = [1, 1, 0, alpha]

colors[4] = [0, 1, 1, alpha]

# set all internal colors to black with alpha=1

colors[1:-1, 1:-1, 1:-1, 0:3] = 0

colors[1:-1, 1:-1, 1:-1, 3] = 1

fig = plt.figure()

ax = fig.add_subplot('111', projection='3d')

ax.voxels(filled, facecolors=colors, edgecolors='k')

fig = plt.figure()

ax = fig.add_subplot('111', projection='3d')

filled[-1] = False

ax.voxels(filled, facecolors=colors, edgecolors='k')

在此处输入图片说明

有什么办法渲染所有被遮挡的体素?

回答:

要将以上我的评论变成答案:

  • 您可能总是像这样绘制所有体素

    • 用matplotlib表示体素
    • matplotlib中的3D离散热图

  • 该负责人举例通过offsettingt体素的一个位面解决了这个问题,这样他们都绘制。
  • 这个matplotlib问题讨论了内部多维数据集上缺少的面。有一个拉取请求仍然存在一些问题,因此尚未合并。

尽管存在一些小问题,但您仍可以在代码中插入pull请求的当前状态:

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D, art3d # NOQA

from matplotlib.cbook import _backports

from collections import defaultdict

import types

def voxels(self, *args, **kwargs):

if len(args) >= 3:

# underscores indicate position only

def voxels(__x, __y, __z, filled, **kwargs):

return (__x, __y, __z), filled, kwargs

else:

def voxels(filled, **kwargs):

return None, filled, kwargs

xyz, filled, kwargs = voxels(*args, **kwargs)

# check dimensions

if filled.ndim != 3:

raise ValueError("Argument filled must be 3-dimensional")

size = np.array(filled.shape, dtype=np.intp)

# check xyz coordinates, which are one larger than the filled shape

coord_shape = tuple(size + 1)

if xyz is None:

x, y, z = np.indices(coord_shape)

else:

x, y, z = (_backports.broadcast_to(c, coord_shape) for c in xyz)

def _broadcast_color_arg(color, name):

if np.ndim(color) in (0, 1):

# single color, like "red" or [1, 0, 0]

return _backports.broadcast_to(

color, filled.shape + np.shape(color))

elif np.ndim(color) in (3, 4):

# 3D array of strings, or 4D array with last axis rgb

if np.shape(color)[:3] != filled.shape:

raise ValueError(

"When multidimensional, {} must match the shape of "

"filled".format(name))

return color

else:

raise ValueError("Invalid {} argument".format(name))

# intercept the facecolors, handling defaults and broacasting

facecolors = kwargs.pop('facecolors', None)

if facecolors is None:

facecolors = self._get_patches_for_fill.get_next_color()

facecolors = _broadcast_color_arg(facecolors, 'facecolors')

# broadcast but no default on edgecolors

edgecolors = kwargs.pop('edgecolors', None)

edgecolors = _broadcast_color_arg(edgecolors, 'edgecolors')

# include possibly occluded internal faces or not

internal_faces = kwargs.pop('internal_faces', False)

# always scale to the full array, even if the data is only in the center

self.auto_scale_xyz(x, y, z)

# points lying on corners of a square

square = np.array([

[0, 0, 0],

[0, 1, 0],

[1, 1, 0],

[1, 0, 0]

], dtype=np.intp)

voxel_faces = defaultdict(list)

def permutation_matrices(n):

""" Generator of cyclic permutation matices """

mat = np.eye(n, dtype=np.intp)

for i in range(n):

yield mat

mat = np.roll(mat, 1, axis=0)

for permute in permutation_matrices(3):

pc, qc, rc = permute.T.dot(size)

pinds = np.arange(pc)

qinds = np.arange(qc)

rinds = np.arange(rc)

square_rot = square.dot(permute.T)

for p in pinds:

for q in qinds:

p0 = permute.dot([p, q, 0])

i0 = tuple(p0)

if filled[i0]:

voxel_faces[i0].append(p0 + square_rot)

# draw middle faces

for r1, r2 in zip(rinds[:-1], rinds[1:]):

p1 = permute.dot([p, q, r1])

p2 = permute.dot([p, q, r2])

i1 = tuple(p1)

i2 = tuple(p2)

if filled[i1] and (internal_faces or not filled[i2]):

voxel_faces[i1].append(p2 + square_rot)

elif (internal_faces or not filled[i1]) and filled[i2]:

voxel_faces[i2].append(p2 + square_rot)

# draw upper faces

pk = permute.dot([p, q, rc-1])

pk2 = permute.dot([p, q, rc])

ik = tuple(pk)

if filled[ik]:

voxel_faces[ik].append(pk2 + square_rot)

# iterate over the faces, and generate a Poly3DCollection for each voxel

polygons = {}

for coord, faces_inds in voxel_faces.items():

# convert indices into 3D positions

if xyz is None:

faces = faces_inds

else:

faces = []

for face_inds in faces_inds:

ind = face_inds[:, 0], face_inds[:, 1], face_inds[:, 2]

face = np.empty(face_inds.shape)

face[:, 0] = x[ind]

face[:, 1] = y[ind]

face[:, 2] = z[ind]

faces.append(face)

poly = art3d.Poly3DCollection(faces,

facecolors=facecolors[coord],

edgecolors=edgecolors[coord],

**kwargs

)

self.add_collection3d(poly)

polygons[coord] = poly

return polygons

spatial_axes = [5, 5, 5]

filled = np.ones(spatial_axes, dtype=np.bool)

colors = np.empty(spatial_axes + [4], dtype=np.float32)

alpha = .5

colors[0] = [1, 0, 0, alpha]

colors[1] = [0, 1, 0, alpha]

colors[2] = [0, 0, 1, alpha]

colors[3] = [1, 1, 0, alpha]

colors[4] = [0, 1, 1, alpha]

# set all internal colors to black with alpha=1

colors[1:-1, 1:-1, 1:-1, 0:3] = 0

colors[1:-1, 1:-1, 1:-1, 3] = 1

fig = plt.figure()

ax = fig.add_subplot('111', projection='3d')

ax.voxels = types.MethodType(voxels, ax)

ax.voxels(filled, facecolors=colors, edgecolors='k',internal_faces=True)

fig = plt.figure()

ax = fig.add_subplot('111', projection='3d')

ax.voxels = types.MethodType(voxels, ax)

filled[-1] = False

ax.voxels(filled, facecolors=colors, edgecolors='k',internal_faces=True)

plt.show()

在此处输入图片说明

以上是 Matplotlib渲染所有内部体素(带有Alpha) 的全部内容, 来源链接: utcz.com/qa/419969.html

回到顶部