怎样通过Java程序提交yarn的mapreduce计算任务

java

    因为项目需求,须要通过Java程序提交Yarn的MapReduce的计算任务。与一般的通过Jar包提交MapReduce任务不同,通过程序提交MapReduce任务须要有点小变动。详见下面代码。

    下面为MapReduce主程序,有几点须要提一下:

    1、在程序中,我将文件读入格式设定为WholeFileInputFormat,即不正确文件进行切分。

    2、为了控制reduce的处理过程。map的输出键的格式为组合键格式。

与常规的<key,value>不同,这里变为了<TextPair,Value>,TextPair的格式为<key1,key2>。

    3、为了适应组合键,又一次设定了分组函数。即GroupComparator。分组规则为,仅仅要TextPair中的key1同样(不要求key2同样),则数据被分配到一个reduce容器中。这样,当同样key1的数据进入reduce容器后,key2起到了一个数据标识的作用。

package web.hadoop;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.BytesWritable;

import org.apache.hadoop.io.WritableComparable;

import org.apache.hadoop.io.WritableComparator;

import org.apache.hadoop.mapred.JobClient;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.JobStatus;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Partitioner;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat;

import util.Utils;

public class GEMIMain {

public GEMIMain(){

job = null;

}

public Job job;

public static class NamePartitioner extends

Partitioner<TextPair, BytesWritable> {

@Override

public int getPartition(TextPair key, BytesWritable value,

int numPartitions) {

return Math.abs(key.getFirst().hashCode() * 127) % numPartitions;

}

}

/**

* 分组设置类。仅仅要两个TextPair的第一个key同样。他们就属于同一组。

他们的Value就放到一个Value迭代器中,

* 然后进入Reducer的reduce方法中。

*

* @author hduser

*

*/

public static class GroupComparator extends WritableComparator {

public GroupComparator() {

super(TextPair.class, true);

}

@Override

public int compare(WritableComparable a, WritableComparable b) {

TextPair t1 = (TextPair) a;

TextPair t2 = (TextPair) b;

// 比較同样则返回0,比較不同则返回-1

return t1.getFirst().compareTo(t2.getFirst()); // 仅仅要是第一个字段同样的就分成为同一组

}

}

public boolean runJob(String[] args) throws IOException,

ClassNotFoundException, InterruptedException {

Configuration conf = new Configuration();

// 在conf中设置outputath变量,以在reduce函数中能够获取到该參数的值

conf.set("outputPath", args[args.length - 1].toString());

//设置HDFS中,每次任务生成产品的质量文件所在目录。args数组的倒数第二个原数为质量文件所在目录

conf.set("qualityFolder", args[args.length - 2].toString());

//假设在Server中执行。则须要获取web项目的根路径;假设以java应用方式调试,则读取/opt/hadoop-2.5.0/etc/hadoop/目录下的配置文件

//MapReduceProgress mprogress = new MapReduceProgress();

//String rootPath= mprogress.rootPath;

String rootPath="/opt/hadoop-2.5.0/etc/hadoop/";

conf.addResource(new Path(rootPath+"yarn-site.xml"));

conf.addResource(new Path(rootPath+"core-site.xml"));

conf.addResource(new Path(rootPath+"hdfs-site.xml"));

conf.addResource(new Path(rootPath+"mapred-site.xml"));

this.job = new Job(conf);

job.setJobName("Job name:" + args[0]);

job.setJarByClass(GEMIMain.class);

job.setMapperClass(GEMIMapper.class);

job.setMapOutputKeyClass(TextPair.class);

job.setMapOutputValueClass(BytesWritable.class);

// 设置partition

job.setPartitionerClass(NamePartitioner.class);

// 在分区之后依照指定的条件分组

job.setGroupingComparatorClass(GroupComparator.class);

job.setReducerClass(GEMIReducer.class);

job.setInputFormatClass(WholeFileInputFormat.class);

job.setOutputFormatClass(NullOutputFormat.class);

// job.setOutputKeyClass(NullWritable.class);

// job.setOutputValueClass(Text.class);

job.setNumReduceTasks(8);

// 设置计算输入数据的路径

for (int i = 1; i < args.length - 2; i++) {

FileInputFormat.addInputPath(job, new Path(args[i]));

}

// args数组的最后一个元素为输出路径

FileOutputFormat.setOutputPath(job, new Path(args[args.length - 1]));

boolean flag = job.waitForCompletion(true);

return flag;

}

@SuppressWarnings("static-access")

public static void main(String[] args) throws ClassNotFoundException,

IOException, InterruptedException {

String[] inputPaths = new String[] { "normalizeJob",

"hdfs://192.168.168.101:9000/user/hduser/red1/",

"hdfs://192.168.168.101:9000/user/hduser/nir1/","quality11111",

"hdfs://192.168.168.101:9000/user/hduser/test" };

GEMIMain test = new GEMIMain();

boolean result = test.runJob(inputPaths);

}

}

下面为TextPair类

public class TextPair implements WritableComparable<TextPair> {

private Text first;

private Text second;

public TextPair() {

set(new Text(), new Text());

}

public TextPair(String first, String second) {

set(new Text(first), new Text(second));

}

public TextPair(Text first, Text second) {

set(first, second);

}

public void set(Text first, Text second) {

this.first = first;

this.second = second;

}

public Text getFirst() {

return first;

}

public Text getSecond() {

return second;

}

@Override

public void write(DataOutput out) throws IOException {

first.write(out);

second.write(out);

}

@Override

public void readFields(DataInput in) throws IOException {

first.readFields(in);

second.readFields(in);

}

@Override

public int hashCode() {

return first.hashCode() * 163 + second.hashCode();

}

@Override

public boolean equals(Object o) {

if (o instanceof TextPair) {

TextPair tp = (TextPair) o;

return first.equals(tp.first) && second.equals(tp.second);

}

return false;

}

@Override

public String toString() {

return first + "\t" + second;

}

@Override

/**A.compareTo(B)

* 假设比較同样,则比較结果为0

* 假设A大于B,则比較结果为1

* 假设A小于B。则比較结果为-1

*

*/

public int compareTo(TextPair tp) {

int cmp = first.compareTo(tp.first);

if (cmp != 0) {

return cmp;

}

//此时实现的是升序排列

return second.compareTo(tp.second);

}

}


下面为WholeFileInputFormat,其控制数据在mapreduce过程中不被切分

package web.hadoop;

import java.io.IOException;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.BytesWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.JobContext;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.TaskAttemptContext;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

public class WholeFileInputFormat extends FileInputFormat<Text, BytesWritable> {

@Override

public RecordReader<Text, BytesWritable> createRecordReader(

InputSplit arg0, TaskAttemptContext arg1) throws IOException,

InterruptedException {

// TODO Auto-generated method stub

return new WholeFileRecordReader();

}

@Override

protected boolean isSplitable(JobContext context, Path filename) {

// TODO Auto-generated method stub

return false;

}

}


下面为WholeFileRecordReader类

package web.hadoop;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.FSDataInputStream;

import org.apache.hadoop.fs.FileSystem;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.BytesWritable;

import org.apache.hadoop.io.IOUtils;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.InputSplit;

import org.apache.hadoop.mapreduce.RecordReader;

import org.apache.hadoop.mapreduce.TaskAttemptContext;

import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class WholeFileRecordReader extends RecordReader<Text, BytesWritable> {

private FileSplit fileSplit;

private FSDataInputStream fis;

private Text key = null;

private BytesWritable value = null;

private boolean processed = false;

@Override

public void close() throws IOException {

// TODO Auto-generated method stub

// fis.close();

}

@Override

public Text getCurrentKey() throws IOException, InterruptedException {

// TODO Auto-generated method stub

return this.key;

}

@Override

public BytesWritable getCurrentValue() throws IOException,

InterruptedException {

// TODO Auto-generated method stub

return this.value;

}

@Override

public void initialize(InputSplit inputSplit, TaskAttemptContext tacontext)

throws IOException, InterruptedException {

fileSplit = (FileSplit) inputSplit;

Configuration job = tacontext.getConfiguration();

Path file = fileSplit.getPath();

FileSystem fs = file.getFileSystem(job);

fis = fs.open(file);

}

@Override

public boolean nextKeyValue() {

if (key == null) {

key = new Text();

}

if (value == null) {

value = new BytesWritable();

}

if (!processed) {

byte[] content = new byte[(int) fileSplit.getLength()];

Path file = fileSplit.getPath();

System.out.println(file.getName());

key.set(file.getName());

try {

IOUtils.readFully(fis, content, 0, content.length);

// value.set(content, 0, content.length);

value.set(new BytesWritable(content));

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} finally {

IOUtils.closeStream(fis);

}

processed = true;

return true;

}

return false;

}

@Override

public float getProgress() throws IOException, InterruptedException {

// TODO Auto-generated method stub

return processed ? fileSplit.getLength() : 0;

}

}



以上是 怎样通过Java程序提交yarn的mapreduce计算任务 的全部内容, 来源链接: utcz.com/z/392087.html

回到顶部