pytorch使用tensorboardX进行loss可视化实例

最近pytorch出了visdom,也没有怎么去研究它,主要是觉得tensorboardX已经够用,而且用起来也十分的简单

pip install tensorboardX

然后在代码里导入

from tensorboardX import SummaryWriter

然后声明一下自己将loss写到哪个路径下面

writer = SummaryWriter('./log')

然后就可以愉快的写loss到你得这个writer了

niter = epoch * len(train_loader) + i

writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)

其中,add_scalars是将不同得变量添加到同一个图下,图的名称是add_scalars得第一个变量

然后为这个图中不同得曲线添加不同得标题,上面这一行代码

writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'train_loss': loss.data.item()}, niter)

后面得dict中得key是曲线的名称,后面的value是对应得append的值,再后面得niter是x坐标,这句话得意思就相当于,对于图名称为args.result_path + 'Train_val_loss'的图,对曲线名称为args.result_path+'train_loss'添加新的点,这个点为(niter, loss.data.item())

同样的,我可以画出val的loss

niter = epoch * len(train_loader) + i

writer.add_scalars(args.result_path + 'Train_val_loss', {args.result_path+'val_loss': mean_loss}, niter)

writer保存到了我们刚刚声明的路径'./log‘下面,然后终端启动tensorboard

tensorboard --logdir ./log --port 8890

不会用得进行tensorboard --help即可

然后进行端口映射就行了

实际上在使用的过程中,我发现了,如果你要保存的结果在各个子文件夹内,然后你在父文件夹运行tensorboard,就可以在浏览器看到各种结果,而不必再进行不同的端口映射

比如上面这个,我的resnet文件夹下有不同的我writer写入的文件,在父目录下启动tensorboard之后,

没毛病!

补充拓展:pytorch产生loss的计算图代码

废话不多说,直接上代码

import torch.nn as nn

import torch.nn.functional as F

class Net(nn.Module):

def __init__(self):

super(Net,self).__init__()

self.conv1=nn.Conv2d(1,6,5)

self.conv2=nn.Conv2d(6,16,5)

self.fc1=nn.Linear(16*5*5,120)

self.fc2=nn.Linear(120,84)

self.fc3=nn.Linear(84,10)

def forward(self,x):

x=F.max_pool2d(F.relu(self.conv1(x)),(2,2))

x=F.max_pool2d(F.relu(self.conv2(x)),2)

x=x.view(x.size()[0],-1)

print(x)

x=F.relu(self.fc1(x))

x=F.relu(self.fc2(x))

x=self.fc3(x)

return x

net=Net()

#params=list(net.parameters())

#for name,parameters in net.named_parameters():

# print(name,':',parameters.size())

#print(len(params))

#print(net)

input=Variable(t.randn(1,1,32,32))

output=net(input)

#out.size()

target=Variable(t.arange(0,10))

criterion=nn.MSELoss()

loss=criterion(output,target)

loss.grad_fn

以上这篇pytorch使用tensorboardX进行loss可视化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 pytorch使用tensorboardX进行loss可视化实例 的全部内容, 来源链接: utcz.com/z/360194.html

回到顶部