tensorflow实现加载mnist数据集

mnist作为最基础的图片数据集,在以后的cnn,rnn任务中都会用到

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

#数据集存放地址,采用0-1编码

mnist = input_data.read_data_sets('F:/mnist/data/',one_hot = True)

print(mnist.train.num_examples)

print(mnist.test.num_examples)

trainimg = mnist.train.images

trainlabel = mnist.train.labels

testimg = mnist.test.images

testlabel = mnist.test.labels

#打印相关信息

print(type(trainimg))

print(trainimg.shape,)

print(trainlabel.shape,)

print(testimg.shape,)

print(testlabel.shape,)

nsample = 5

randidx = np.random.randint(trainimg.shape[0],size = nsample)

#输出几张数字的图

for i in randidx:

curr_img = np.reshape(trainimg[i,:],(28,28))

curr_label = np.argmax(trainlabel[i,:])

plt.matshow(curr_img,cmap=plt.get_cmap('gray'))

plt.title(""+str(i)+"th Training Data"+"label is"+str(curr_label))

print(""+str(i)+"th Training Data"+"label is"+str(curr_label))

plt.show()

程序运行结果如下:

Extracting F:/mnist/data/train-images-idx3-ubyte.gz

Extracting F:/mnist/data/train-labels-idx1-ubyte.gz

Extracting F:/mnist/data/t10k-images-idx3-ubyte.gz

Extracting F:/mnist/data/t10k-labels-idx1-ubyte.gz

55000

10000

<class 'numpy.ndarray'>

(55000, 784)

(55000, 10)

(10000, 784)

(10000, 10)

52636th

输出的图片如下:

Training Datalabel is9

下面还有四张其他的类似图片

以上是 tensorflow实现加载mnist数据集 的全部内容, 来源链接: utcz.com/z/348172.html

回到顶部