苏州机器人博物馆门票
苏州机器人博物馆门票:全球最大的机器人博物馆,集展览、体验、教学、科研于一体。门票价格适中,可线上预订,也可到馆购票,为机器人爱好者提供了一个充满硬科技的学习和娱乐场所。介绍苏州机器人博物馆创办于2017年,坐落于苏州高新区,是目前全球最大的机器人主题博物馆之一,馆内展...
2024-01-10华制冰是机器人还是投影
华制冰是机器人。华智冰,是基于“悟道2.0”诞生的中国原创虚拟学生。“华智冰”脸部、声音都通过人工智能模型生成。具有丰富知识、与人类有良好交互能力的机器人,会创作音乐、诗词和绘画作品。华智冰可以作诗、作画、创作音乐,还具有一定的推理和情感交互的能力。与一般的虚拟数字人不同,华智冰拥有持续的学习能力,能够逐渐“长大”,不断“学习”数据中隐含的模式,包括文本、视觉、图像,视频等。华制冰就像人类能够不...
2024-02-09机器学习:从入门到晋级
目前,人工智能(AI)非常热门,许多人都想一窥究竟。如果你对人工智能有所了解,但对机器学习(Machine Learning)的理解有很多的困惑,那么看完本文后你将会对此有进一步深入理解。在这里,不会详细介绍机器学习算法的基本原理,而是通过将比较有意思的视频(YouTube)和文字相结合,...
2024-01-10机器学习入门:脸部关键点检测
在前几篇文章中我们看到了怎样检测图片上的物体,例如人脸,那么把实现人脸识别的时候是不是可以把图片中的人脸截取出来再交给识别人脸的模型呢?下面的流程是可行的,但因为人脸的范围不够准确,截取出来的人脸并不在图片的正中心,对于识别人脸的模型来说,数据质量不够好就会导致识别...
2024-01-10近似字符串匹配-机器学习
我有一个要求,其中我的源数据位于HDFS中,并且有一个包含用户技能的字段。现在,源文件具有归因于用户的所有技能,例如-管理,JAVA,HADOOP,PIG,SQL,性能调整,C,业务咨询,销售等.....现在,我的疑问是,我需要构建一种机器学习算法来检测所谓的技能中是否存在一些拼写错误。例如,如果不...
2024-01-10使用机器学习预测股价
股票价格预测有助于确定未来几天或几周内股票的走势,或者至少显示趋势。股票价格取决于多种因素,例如:基本因素:收入,利润,市场份额,业务的潜在增长前景外部因素:大流行病,例如新冠,外汇汇率,石油价格,黄金价格,债券收益率,全球股票市场技术因素:价格走势,交易量,移动...
2024-01-10机器学习之分类:准确率
准确率是一个用于评估分类模型的指标。通俗来说,准确率是指我们的模型预测准确的结果所占的比例。正式点说,准确率的定义如下:Accuracy = \dfrac{Number of correct predictions}{Total number of predictions}对于二元分类,也可以根据正类别和负类别按如下方式计算准确率:Accuracy = \dfrac{TP + TN}{TP + TN + FP + FN}其...
2024-01-10机器学习之特征工程
传统编程的关注点是代码. 在机器学习项目中, 关注点变成了特征表示.也就是说, 开发者通过添加和改善特征来调整模型.将原始数据映射到特征图 1 左侧表示来自输入数据源的原始数据, 右侧表示特征矢量, 也就是组成数据集中样本的浮点值集.特征工程指的是将原始数据转换为特征矢量.进行特征工程...
2024-01-10如何入门机器学习
本篇文章,我将从过来的人角度介绍下机器学习如何从入门到精通,这里我们谈经验,谈工具,更谈方法论。1.入门作为初入机器学习的小白,你可能除了一颗好奇的心和一番热血外什么都不没有,当然最好还是希望你能有线性代数、微积分和概率论的基础。你可能会心存顾虑:学过但忘了。不用担...
2024-01-10机器学习之分类:预测偏差
逻辑回归预测应当无偏差。即:“预测平均值”应当约等于“观察平均值”预测偏差指的是这两个平均值之间的差值。即:预测偏差 = 预测平均值 - 数据集中相应标签的平均值注意:“预测偏差”与“偏差”(“wx + b”中的“b”)不是一回事。如果出现非常高的非零预测偏差,则说明模型某处存在错误...
2024-01-10机器学习的分类
品牌型号:Redmibook Pro 15系统:Windows 101、监督学习:表示机器学习的数据是带标记的,这些标记可以包括数据类别、数据属性及特征点位置等。这些标记作为预期效果,不断修正机器的预测结果。具体实现过程是:通过大量带有标记的数据来训练机器,机器将预测结果与期望结果进行比对;之后根据比对结果来修改模型中的参数,再一次输出预测结果;然后将预测结果与期望结果进行比对,重复多次直...
2024-02-13机器学习之分类:精确率和召回率
精确率精确率指标尝试回答以下问题:在被识别为正类别的样本中,确实为正类别的比例是多少?精确率的定义如下:Precision = \dfrac{TP}{TP + FP}注意:如果模型的预测结果中没有假正例,则模型的精确率为 1.0 。让我们来计算一下上一部分中用于分析肿瘤的机器学习模型的精确率:精确率 = \dfrac{TP}{TP ...
2024-01-10