python中Sobel算子如何使用

美女程序员鼓励师

说明

1、Sobel算子根据像素点的上下、左右相邻点的灰度加权差,在边缘达到极值的现象来检测边缘。

它具有平滑的噪声功能,并提供更准确的边缘方向信息。由于Sobel算子结合了高斯平滑度和微分求导(分化),因此结果会更具抗噪性,当对精度要求不高时,Sobel算子是一种常用的边缘检测方法。

2、Sobel算子仍然是过滤器,但它有方向。

dst = cv2.Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])

实例

# coding=utf-8

import cv2

import numpy as np

 

img = cv2.imread("D:/test/26.png", 0)

 

'''

在Sobel函数的第二个参数这里使用了cv2.CV_16S。

因为OpenCV文档中对Sobel算子的介绍中有这么一句:

“in the case of 8-bit input images it will result in truncated derivatives”。

即Sobel函数求完导数后会有负值,还有会大于255的值。

而原图像是uint8,即8位无符号数,所以Sobel建立的图像位数不够,会有截断。

因此要使用16位有符号的数据类型,即cv2.CV_16S。

在经过处理后,别忘了用convertScaleAbs()函数将其转回原来的uint8形式。

否则将无法显示图像,而只是一副灰色的窗口。convertScaleAbs()的原型为:

dst = cv2.convertScaleAbs(src[, dst[, alpha[, beta]]])

其中可选参数alpha是伸缩系数,beta是加到结果上的一个值。结果返回uint8类型的图片。

由于Sobel算子是在两个方向计算的,最后还需要用cv2.addWeighted(...)函数将其组合起来。

其函数原型为:

dst = cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]])

其中alpha是第一幅图片中元素的权重,beta是第二个的权重,gamma是加到最后结果上的一个值。

'''

 

x = cv2.Sobel(img, cv2.CV_16S, 1, 0)

y = cv2.Sobel(img, cv2.CV_16S, 0, 1)

 

absX = cv2.convertScaleAbs(x)# 转回uint8

absY = cv2.convertScaleAbs(y)

 

dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)

 

cv2.imshow("orign", img)

cv2.imshow("absX", absX)

cv2.imshow("absY", absY)

 

cv2.imshow("Result", dst)

 

cv2.waitKey(0)

cv2.destroyAllWindows()

以上就是python中Sobel算子的使用,希望对大家有所帮助。更多Python学习指路:python基础教程

本文教程操作环境:windows7系统、Python 3.9.1,DELL G3电脑。

以上是 python中Sobel算子如何使用 的全部内容, 来源链接: utcz.com/z/545499.html

回到顶部