Spark单词计数(WordCount)的MapReduce实现(Java/Python)orion

database

我们在上一篇博客中学习了如何用Hadoop-MapReduce实现单词计数,现在我们来看如何用Spark来实现同样的功能。Spark框架也是MapReduce-like模型,采用“分治-聚合”策略来对数据分布进行分布并行处理。不过该框架相比Hadoop-MapReduce,具有以下两个特点:对大数据处理框架的输入/输出,中间数据进行建模,将这些数据抽象为统一的数据结构命名为弹性分布式数据集。

1 导引

我们在博客《Hadoop: 单词计数(Word Count)的MapReduce实现 》中学习了如何用Hadoop-MapReduce实现单词计数,现在我们来看如何用Spark来实现同样的功能。

2. Spark的MapReudce原理

Spark框架也是MapReduce-like模型,采用“分治-聚合”策略来对数据分布进行分布并行处理。不过该框架相比Hadoop-MapReduce,具有以下两个特点:

  • 对大数据处理框架的输入/输出,中间数据进行建模,将这些数据抽象为统一的数据结构命名为弹性分布式数据集(Resilient Distributed Dataset),并在此数据结构上构建了一系列通用的数据操作,使得用户可以简单地实现复杂的数据处理流程。

  • 采用了基于内存的数据聚合、数据缓存等机制来加速应用执行尤其适用于迭代和交互式应用。

Spark社区推荐用户使用Dataset、DataFrame等面向结构化数据的高层API(Structured API)来替代底层的RDD API,因为这些高层API含有更多的数据类型信息(Schema),支持SQL操作,并且可以利用经过高度优化的Spark SQL引擎来执行。不过,由于RDD API更基础,更适合用来展示基本概念和原理,后面我们的代码都使用RDD API。

Spark的RDD/dataset分为多个分区。RDD/Dataset的每一个分区都映射一个或多个数据文件, Spark通过该映射读取数据输入到RDD/dataset中。

Spark的分区数和以下参数都有关系:

  • spark.default.parallelism (默认为CPU的核数)

  • spark.sql.files.maxPartitionBytes (默认为128 MB)读取文件时打包到单个分区中的最大字节数)

  • spark.sql.files.openCostInBytes (默认为4 MB) 该参数默认4M,表示小于4M的小文件会合并到一个分区中,用于减小小文件,防止太多单个小文件占一个分区情况。这个参数就是合并小文件的阈值,小于这个阈值的文件将会合并。

我们下面的流程描述中,假设每个文件对应一个分区(实际上因为文件很小,导致三个文件都在同一个分区中,大家可以通过调用RDD对象的getNumPartitions()查看)。

Spark的Map示意图如下:

Spark的Reduce示意图如下:

3. Word Count的Java实现

项目架构如下图:

Word-Count-Spark

├─ input

│ ├─ file1.txt

│ ├─ file2.txt

│ └─ file3.txt

├─ output

│ └─ result.txt

├─ pom.xml

├─ src

│ ├─ main

│ │ └─ java

│ │ └─ WordCount.java

│ └─ test

└─ target

WordCount.java文件如下:

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.sql.SparkSession;

import scala.Tuple2;

import java.util.Arrays;

import java.util.List;

import java.util.regex.Pattern;

import java.io.*;

import java.nio.file.*;

public class WordCount {

private static Pattern SPACE = Pattern.compile(" ");

public static void main(String[] args) throws Exception {

if (args.length != 2) {

System.err.println("Usage: WordCount <intput directory> <output directory>");

System.exit(1);

}

String input_path = args[0];

String output_path = args[1];

SparkSession spark = SparkSession.builder()

.appName("WordCount")

.master("local")

.getOrCreate();

JavaRDD<String> lines = spark.read().textFile(input_path).javaRDD();

JavaRDD<String> words = lines.flatMap(s -> Arrays.asList(SPACE.split(s)).iterator());

JavaPairRDD<String, Integer> ones = words.mapToPair(s -> new Tuple2<>(s, 1));

JavaPairRDD<String, Integer> counts = ones.reduceByKey((i1, i2) -> i1 + i2);

List<Tuple2<String, Integer>> output = counts.collect();

String filePath = Paths.get(output_path, "result.txt").toString();

BufferedWriter out = new BufferedWriter(new FileWriter(filePath));

for (Tuple2<?, ?> tuple : output) {

out.write(tuple._1() + ": " + tuple._2() + "

");

}

out.close();

spark.stop();

}

}

pom.xml文件配置如下:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.WordCount</groupId>

<artifactId>WordCount</artifactId>

<version>1.0-SNAPSHOT</version>

<name>WordCount</name>

<!-- FIXME change it to the project"s website -->

<url>http://www.example.com</url>

<!-- 集中定义版本号 -->

<properties>

<scala.version>2.12.10</scala.version>

<scala.compat.version>2.12</scala.compat.version>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

<project.timezone>UTC</project.timezone>

<java.version>11</java.version>

<scoverage.plugin.version>1.4.0</scoverage.plugin.version>

<site.plugin.version>3.7.1</site.plugin.version>

<scalatest.version>3.1.2</scalatest.version>

<scalatest-maven-plugin>2.0.0</scalatest-maven-plugin>

<scala.maven.plugin.version>4.4.0</scala.maven.plugin.version>

<maven.compiler.plugin.version>3.8.0</maven.compiler.plugin.version>

<maven.javadoc.plugin.version>3.2.0</maven.javadoc.plugin.version>

<maven.source.plugin.version>3.2.1</maven.source.plugin.version>

<maven.deploy.plugin.version>2.8.2</maven.deploy.plugin.version>

<nexus.staging.maven.plugin.version>1.6.8</nexus.staging.maven.plugin.version>

<maven.help.plugin.version>3.2.0</maven.help.plugin.version>

<maven.gpg.plugin.version>1.6</maven.gpg.plugin.version>

<maven.surefire.plugin.version>2.22.2</maven.surefire.plugin.version>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<maven.compiler.source>11</maven.compiler.source>

<maven.compiler.target>11</maven.compiler.target>

<spark.version>3.2.1</spark.version>

</properties>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.11</version>

<scope>test</scope>

</dependency>

<!--======SCALA======-->

<dependency>

<groupId>org.scala-lang</groupId>

<artifactId>scala-library</artifactId>

<version>${scala.version}</version>

<scope>provided</scope>

</dependency>

<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.12</artifactId>

<version>${spark.version}</version>

</dependency>

<!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->

<dependency> <!-- Spark dependency -->

<groupId>org.apache.spark</groupId>

<artifactId>spark-sql_2.12</artifactId>

<version>${spark.version}</version>

<scope>provided</scope>

</dependency>

</dependencies>

<build>

<pluginManagement><!-- lock down plugins versions to avoid using Maven defaults (may be moved to parent pom) -->

<plugins>

<!-- clean lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#clean_Lifecycle -->

<plugin>

<artifactId>maven-clean-plugin</artifactId>

<version>3.1.0</version>

</plugin>

<!-- default lifecycle, jar packaging: see https://maven.apache.org/ref/current/maven-core/default-bindings.html#Plugin_bindings_for_jar_packaging -->

<plugin>

<artifactId>maven-resources-plugin</artifactId>

<version>3.0.2</version>

</plugin>

<plugin>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.8.0</version>

</plugin>

<plugin>

<artifactId>maven-surefire-plugin</artifactId>

<version>2.22.1</version>

</plugin>

<plugin>

<artifactId>maven-jar-plugin</artifactId>

<version>3.0.2</version>

</plugin>

<plugin>

<artifactId>maven-install-plugin</artifactId>

<version>2.5.2</version>

</plugin>

<plugin>

<artifactId>maven-deploy-plugin</artifactId>

<version>2.8.2</version>

</plugin>

<!-- site lifecycle, see https://maven.apache.org/ref/current/maven-core/lifecycles.html#site_Lifecycle -->

<plugin>

<artifactId>maven-site-plugin</artifactId>

<version>3.7.1</version>

</plugin>

<plugin>

<artifactId>maven-project-info-reports-plugin</artifactId>

<version>3.0.0</version>

</plugin>

<plugin>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.8.0</version>

<configuration>

<source>11</source>

<target>11</target>

<fork>true</fork>

<executable>/Library/Java/JavaVirtualMachines/jdk-11.0.15.jdk/Contents/Home/bin/javac</executable>

</configuration>

</plugin>

</plugins>

</pluginManagement>

</build>

</project>

记得配置输入参数inputoutput代表输入目录和输出目录(在VSCode中在launch.json文件中配置)。编译运行后可在output目录下查看result.txt

Tom: 1

Hello: 3

Goodbye: 1

World: 2

David: 1

可见成功完成了单词计数功能。

4. Word Count的Python实现

先使用pip按照pyspark==3.8.2

pip install pyspark==3.8.2

注意PySpark只支持Java 8/11,请勿使用更高级的版本。这里我使用的是Java 11。运行java -version可查看本机Java版本。

(base) orion-orion@MacBook-Pro ~ % java -version

java version "11.0.15" 2022-04-19 LTS

Java(TM) SE Runtime Environment 18.9 (build 11.0.15+8-LTS-149)

Java HotSpot(TM) 64-Bit Server VM 18.9 (build 11.0.15+8-LTS-149, mixed mode)

项目架构如下:

Word-Count-Spark

├─ input

│ ├─ file1.txt

│ ├─ file2.txt

│ └─ file3.txt

├─ output

│ └─ result.txt

├─ src

│ └─ word_count.py

word_count.py编写如下:

from pyspark.sql import SparkSession

import sys

import os

from operator import add

if len(sys.argv) != 3:

print("Usage: WordCount <intput directory> <output directory>", file=sys.stderr)

exit(1)

input_path, output_path = sys.argv[1], sys.argv[2]

spark = SparkSession.builder.appName("WordCount").master("local").getOrCreate()

lines = spark.read.text(input_path).rdd.map(lambda r: r[0])

counts = lines.flatMap(lambda s: s.split(" "))

.map(lambda word: (word, 1))

.reduceByKey(add)

output = counts.collect()

with open(os.path.join(output_path, "result.txt"), "wt") as f:

for (word, count) in output:

f.write(str(word) +": " + str(count) + "

")

spark.stop()

使用python word_count.py input output运行后,可在output中查看对应的输出文件result.txt

Hello: 3

World: 2

Goodbye: 1

David: 1

Tom: 1

可见成功完成了单词计数功能。

参考

  • [1] Spark官方文档: Quick Start
  • [2] 许利杰,方亚芬. 大数据处理框架Apache Spark设计与实现[M]. 电子工业出版社, 2021.
  • [3] GiHub: Spark官方Java样例
  • [4] similarface: Spark数据分区数量的原理

数学是符号的艺术,音乐是上界的语言。

以上是 Spark单词计数(WordCount)的MapReduce实现(Java/Python)orion 的全部内容, 来源链接: utcz.com/z/536574.html

回到顶部