Hive——安装以及概述
一、hive的安装
注意:安装hive的前提要安装好MySQL和Hadoop
Hadoop安装:https://www.cnblogs.com/lmandcc/p/15306163.html
MySQL的安装:https://www.cnblogs.com/lmandcc/p/15224657.html
安装hive首先需要启动Hadoop
1、解压hive的安装包
tar -zxvf apache-hive-1.2.1-bin.tar.gz
修改下目录名称
mv apache-hive-1.2.1-bin hive-1.2.1
2、备份配置文件
cd /usr/local/soft/hive-1.2.1/conf
cp hive-env.sh.template hive-env.sh
cp hive-default.xml.template hive-site.xml
3、修改配置文件
vim hive.env.sh
新加三行配置(路径不同就更具实际情况来):
HADOOP_HOME=/usr/local/soft/hadoop-2.7.6
JAVA_HOME=/usr/local/soft/jdk1.8.0_171
HIVE_HOME=/usr/local/soft/hive-1.2.1
4、修改配置文件
vim hive-site.xml
修改对应的配置参数(注意:是修改不是添加)
1<property> 2<name>javax.jdo.option.ConnectionURL</name>
3<value>jdbc:mysql://master:3306/hive?characterEncoding=UTF-8&createDatabaseIfNotExist=true&useSSL=false</value>
4</property>
5<property>
6<name>javax.jdo.option.ConnectionDriverName</name>
7<value>com.mysql.jdbc.Driver</value>
8</property>
9<property>
10<name>javax.jdo.option.ConnectionUserName</name>
11<value>root</value>
12</property>
13<property>
14<name>javax.jdo.option.ConnectionPassword</name>
15<value>123456</value>
16</property>
17<property>
18<name>hive.querylog.location</name>
19<value>/usr/local/soft/hive-1.2.1/tmp</value>
20</property>
21<property>
22<name>hive.exec.local.scratchdir</name>
23<value>/usr/local/soft/hive-1.2.1/tmp</value>
24</property>
25<property>
26<name>hive.downloaded.resources.dir</name>
27<value>/usr/local/soft/hive-1.2.1/tmp</value>
28</property>
5、复制mysql连接工具包到hive/lib
cd /usr/local/soft/hive-1.2.1
cp /usr/local/moudle/mysql-connector-java-5.1.49.jar /usr/local/soft/hive-1.2.1/lib/
6、删除hadoop中自带的jline-2.12.jar位置在/usr/local/soft/hadoop-2.7.6/share/hadoop/yarn/lib/jline-2.12.jar
rm -rf /usr/local/soft/hadoop-2.7.6/share/hadoop/yarn/lib/jline-2.12.jar
7、把hive自带的jline-2.12.jar复制到hadoop中 hive中所在位置 /usr/local/soft/hive-1.2.1/lib/jline-2.12.jar
cp /usr/local/soft/hive-1.2.1/lib/jline-2.12.jar /usr/local/soft/hadoop-2.7.6/share/hadoop/yarn/lib/
8、启动
hive
二、hive的概述
1、hive简介
Hive:由Facebook开源用于解决海量结构化日志的数据统计工具。
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能。
Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL ),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。Hive 定义了简单的类 SQL 查询语言,称为 HQL ,它允许熟悉 SQL 的用户查询数据。同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。
数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它出于分析性报告和决策支持目的而创建。为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。
2、Hive本质:将HQL转化成MapReduce程序
(1)Hive处理的数据存储在HDFS
(2)Hive分析数据底层的实现是MapReduce
(3)执行程序运行在Yarn上
3、hive的优点
(1)操作接口采用类SQL语法,提供快速开发的能力(简单、容易上手)。
(2)避免了去写MapReduce,减少开发人员的学习成本。
(3)Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合。
(4)Hive优势在于处理大数据,对于处理小数据没有优势,因为Hive的执行延迟比较高。
(5)Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
4、hive的缺点
1)Hive的HQL表达能力有限
(1)迭代式算法无法表达
(2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。
2)Hive的效率比较低
(1)Hive自动生成的MapReduce作业,通常情况下不够智能化
(2)Hive调优比较困难,粒度较粗
5、Hive架构原理
1)用户接口:Client
CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)
2)元数据:Metastore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
3)Hadoop
使用HDFS进行存储,使用MapReduce进行计算。
4)驱动器:Driver
(1)解析器(SQL Parser):将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析,比如表是否存在、字段是否存在、SQL语义是否有误。
(2)编译器(Physical Plan):将AST编译生成逻辑执行计划。
(3)优化器(Query Optimizer):对逻辑执行计划进行优化。
(4)执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark。
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
以上是 Hive——安装以及概述 的全部内容, 来源链接: utcz.com/z/535966.html