FlinkDataStreamAPI

database

1.  API基本概念

Flink程序可以对分布式集合进行转换(例如: filtering, mapping, updating state, joining, grouping, defining windows, aggregating)

集合最初是从源创建的(例如,从文件、kafka主题或本地内存集合中读取)

结果通过sink返回,例如,可以将数据写入(分布式)文件,或者写入标准输出(例如,命令行终端)

根据数据源的类型(有界或无界数据源),可以编写批处理程序或流处理程序,其中使用DataSet API进行批处理,并使用DataStream API进行流处理。

Flink有特殊的类DataSet和DataStream来表示程序中的数据。在DataSet的情况下,数据是有限的,而对于DataStream,元素的数量可以是无限的。 

Flink程序看起来像转换数据集合的常规程序。每个程序都包含相同的基本部分:

  • 获取一个执行环境
  • 加载/创建初始数据
  • 指定数据上的转换
  • 指定计算结果放在哪里
  • 触发程序执行

 

为了方便演示,先创建一个项目,可以从maven模板创建,例如:

mvn archetype:generate

-DarchetypeGroupId=org.apache.flink

-DarchetypeArtifactId=flink-quickstart-java

-DarchetypeVersion=1.10.0

-DgroupId=com.cjs.example

-DartifactId=flink-quickstart

-Dversion=1.0.0-SNAPSHOT

-Dpackage=com.cjs.example.flink

-DinteractiveMode=false

也可以直接创建SpringBoot项目,自行引入依赖:

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-java</artifactId>

<version>1.10.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-streaming-java_2.11</artifactId>

<version>1.10.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.apache.flink</groupId>

<artifactId>flink-connector-kafka-0.10_2.11</artifactId>

<version>1.10.0</version>

</dependency>

StreamExecutionEnvironment是所有Flink程序的基础。你可以在StreamExecutionEnvironment上使用以下静态方法获得一个:

getExecutionEnvironment()

createLocalEnvironment()

createRemoteEnvironment(String host, int port, String... jarFiles)

通常,只需要使用getExecutionEnvironment()即可,因为该方法会根据上下文自动推断出当前的执行环境

从文件中读取数据,例如:

final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<String> text = env.readTextFile("file:///path/to/file");

对DataStream应用转换,例如:

DataStream<String> input = ...;

DataStream<Integer> parsed = input.map(new MapFunction<String, Integer>() {

@Override

public Integer map(String value) {

return Integer.parseInt(value);

}

});

通过创建一个sink将结果输出,例如:

writeAsText(String path)

print()

最后,调用StreamExecutionEnvironment上的execute()执行:

//  Triggers the program execution

env.execute();

// Triggers the program execution asynchronously

final JobClient jobClient = env.executeAsync();

final JobExecutionResult jobExecutionResult = jobClient.getJobExecutionResult(userClassloader).get();

下面通过单词统计的例子来加深对这一流程的理解,WordCount程序之于大数据就相当于是HelloWorld之于Java,哈哈哈

package com.cjs.example.flink;

import org.apache.flink.api.common.functions.FlatMapFunction;

import org.apache.flink.api.java.DataSet;

import org.apache.flink.api.java.ExecutionEnvironment;

import org.apache.flink.api.java.tuple.Tuple2;

import org.apache.flink.util.Collector;

/**

* Map-Reduce思想

* 先分组,再求和

* @author ChengJianSheng

* @date 2020-05-26

*/

publicclass WordCount {

publicstaticvoid main(String[] args) throws Exception {

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

DataSet<String> text = env.readTextFile("/Users/asdf/Desktop/input.txt");

DataSet<Tuple2<String, Integer>> counts =

// split up the lines in pairs (2-tuples) containing: (word,1)

text.flatMap(new Tokenizer())

// group by the tuple field "0" and sum up tuple field "1"

.groupBy(0)

.sum(1);

counts.writeAsCsv("/Users/asdf/Desktop/aaa", "

", " ");

env.execute();

}

staticclass Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {

@Override

publicvoid flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {

// normalize and split the line

String[] tokens = value.toLowerCase().split("\W+");

// emit the pairs

for (String token : tokens) {

if (token.length() > 0) {

out.collect(new Tuple2<>(token, 1));

}

}

}

}

}

为Tuple定义keys

Python中也有Tuple(元组)

DataStream<Tuple3<Integer,String,Long>> input = // [...]

KeyedStream<Tuple3<Integer,String,Long>,Tuple> keyed = input.keyBy(0)

元组按第一个字段(整数类型的字段)分组

还可以使用POJO的属性来定义keys,例如:

// some ordinary POJO (Plain old Java Object)

publicclass WC {

public String word;

publicint count;

}

DataStream<WC> words = // [...]

DataStream<WC> wordCounts = words.keyBy("word").window(/*window specification*/);

先来了解一下KeyedStream

因此可以通过KeySelector方法来自定义

// some ordinary POJO

publicclass WC {public String word; publicint count;}

DataStream<WC> words = // [...]

KeyedStream<WC> keyed = words

.keyBy(new KeySelector<WC, String>() {

public String getKey(WC wc) { return wc.word; }

});

如何指定转换方法呢?

方式一:匿名内部类

data.map(new MapFunction<String, Integer> () {

public Integer map(String value) { return Integer.parseInt(value); }

});

方式二:Lamda

data.filter(s -> s.startsWith("http://"));

data.reduce((i1,i2) -> i1 + i2);

2.  DataStream API

下面这个例子,每10秒钟统计一次来自Web Socket的单词次数

package com.cjs.example.flink;

import org.apache.flink.api.common.functions.FlatMapFunction;

import org.apache.flink.api.java.tuple.Tuple2;

import org.apache.flink.streaming.api.datastream.DataStream;

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import org.apache.flink.streaming.api.windowing.time.Time;

import org.apache.flink.util.Collector;

publicclass WindowWordCount {

publicstaticvoid main(String[] args) throws Exception {

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

DataStream<Tuple2<String, Integer>> dataStream = env.socketTextStream("localhost", 9999)

.flatMap(new Splitter())

.keyBy(0)

.timeWindow(Time.seconds(10))

.sum(1);

dataStream.print();

env.execute("Window WordCount");

}

staticclass Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> {

@Override

publicvoid flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {

String[] words = value.split("\W+");

for (String word : words) {

out.collect(new Tuple2<String, Integer>(word, 1));

}

}

}

}

为了运行此程序,首先要在终端启动一个监听

nc -lk 9999

 

https://ci.apache.org/projects/flink/flink-docs-release-1.10/dev/datastream_api.html 

以上是 FlinkDataStreamAPI 的全部内容, 来源链接: utcz.com/z/534045.html

回到顶部