Pythonmatplotlib数据可视化:商业图表条形图
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
以下文章来源于DataCharm,作者 宁海涛
转载地址
https://www.zhihu.com/people/qi-shi-huan-hao-la-14/posts
绘制图标介绍
这篇推文是关于中美贸易的文章配图(具体我们这里我们不多做介绍,我们只关注配图的美观设计),文章的插图如下:
配图是真的没话说,特别是配色(这种配色我后面会做一个Excel的配图颜色系会比这个多几个色系。大家如果需求多,我会分享出来的哦)
Python matplotlib
绘图数据
这里的数据处理步骤暂且不过多介绍,绘图数据如下
可视化
我们直接上代码,大家不会的可以详细看代码中的注释:
china_color = ["#3D71A0","#B70050","#FD9717","#B6CBDF"]china_text
= ["Aluminum waste and scrap","Pork","Fruits and nuts","Other"]us_color
= ["#3D71A0","#B70050","#FD9717","#B6CBDF","#3DAE5E","#133831"]us_list
= ["64%", "12%", "10%", "8%", "6%", ""]us_text
= ["Aluminum","Long","Pipe/tube","Stainless","Flat",""]barWidth
= .6lefts_china
= 0lefts_us
= 0fig,ax
= plt.subplots(figsize=(8,4.5),dpi=200)for bars, col,text,text2 in zip(china["2017 exports, in actual dollars"], china_color,china["percent%"],china_text):ax.barh(
1, bars, left=lefts_china, color=col, height=barWidth,align="center")lefts_china
+= bars#大家注意这里:可以详细看一下if lefts_china == china["2017 exports, in actual dollars"][0]:
ax.text(bars/2,1,text,color="k",fontweight="extra bold",size=13,ha="center",va="center")
ax.text(bars/2,1.4,text2,color="k",fontweight="light",size=8,ha="center",va="center")
else:
ax.text(lefts_china-bars/2,1,text,color="k",fontweight="extra bold",size=13,ha="center",va="center")
ax.text(lefts_china-bars/2,1.4,text2,color="k",fontweight="light",size=8,ha="center",va="center")
#添加暗黑色柱形图
ax.barh(.6,china["2017 exports, in actual dollars"].sum(),color="#172A39",height=.35,zorder=0)
for bars, col,text,text2 in zip(us["2017 imports, in actual dollars2"], us_color,us_list,us_text):
ax.barh(3, bars, left=lefts_us, color=col, height=barWidth,align="center")
lefts_us += bars
if lefts_us == us["2017 imports, in actual dollars2"][0]:
ax.text(bars/2,3,text,color="k",fontweight="extra bold",size=13,ha="center",va="center")
ax.text(bars/2,3.4,text2,color="k",fontweight="light",size=8,ha="center",va="center")
else:
ax.text(lefts_us-bars/2,3,text,color="k",fontweight="extra bold",size=13,ha="center",va="center")
ax.text(lefts_us-bars/2,3.4,text2,color="k",fontweight="light",size=8,ha="center",va="center")
ax.barh(2.6,us["2017 imports, in actual dollars2"].sum(),color="#172A39",height=.35,zorder=0)
#定制化设置
ax.axis("off")
ax.axvline(x=0,ymin=.05,color="k",lw=.8)
ax.set_ylim(bottom=0,top=4)
#添加文本信息
ax.text(.02,.95,"Chinese exports covered by US Section 232 tariffs",
transform = ax.transAxes,color="k",ha="left",va="center",size=9,fontweight="semibold")
ax.text(.3,.64,"$2.8 BILLION EXPORT VALUE,2017",
transform = ax.transAxes,color="white",ha="left",va="center",size=8.5,fontweight="semibold")
#添加文本信息
ax.text(.02,.45,"US exports covered by Chinese retaliatory tariffs for US Section 232 tariffs",
transform = ax.transAxes,color="k",ha="left",va="center",size=9,fontweight="semibold")
ax.text(.2,.14,"$2.4 BILLION EXPORT VALUE,2017",
transform = ax.transAxes,color="white",ha="left",va="center",size=8.5,fontweight="semibold")
#再单独添加 semi-finished 描述部分
ax.text(us["2017 imports, in actual dollars2"].sum(),3,"<1%",ha="left",va="center",size=13,
fontweight="extra bold")
ax.text(us["2017 imports, in actual dollars2"].sum(),3.4,"Semi-finished",ha="left",va="center",size=8,
fontweight="light")
#添加小横线
ax.plot([us["2017 imports, in actual dollars2"][:1].sum(),us["2017 imports, in actual dollars2"].sum()],[3.55,3.55],
color="k",lw=.6)
text_loc = us["2017 imports, in actual dollars2"][:3].sum()
ax.text(text_loc,3.64,"STEEL PRODUCTS",ha="center",va="center")
#添加刻度文本
ax.text(-.02,.2,"CHINESE
ACTION IN
EFFECT
APRIL 2",ha="right",va="center",fontweight="medium",size=11,
transform = ax.transAxes)
ax.text(-.02,.7,"US ACTION
INEFFECT
MARCH 23",ha="right",va="center",fontweight="medium",size=11,
transform = ax.transAxes)
#添加标题
ax.text(-.1,1.15,"How Is China Retaliating for US Nation
Security Tariffs on Steel and Aluminum?",
transform = ax.transAxes,color="k",ha="left",va="center",size=20,fontweight="extra bold")
ax.text(.91,.05,"
Visualization by DataCharm",transform = ax.transAxes,
ha="center", va="center",fontsize = 7,color="black")
plt.savefig(r"F:DataCharm商业艺术图表仿制PIEE_ChartsChina USPIEE_china_us02.png",width=8,height=4,
dpi=900,bbox_inches="tight",facecolor="white")
#ax.set_axisbelow(True)
plt.show()
最终我们绘制的效果如下:
知识点
- 横向堆积柱形图绘制 这里举一个小栗子大家看下就可以:
from matplotlib import pyplot as pltimport numpy as npN
= 5r
= range(N)bars1
= np.random.binomial(20, .7, N)bars2
= np.random.binomial(20, .5, N)bars3
= np.random.binomial(20, .4, N)colors
= ["#7f6d5f", "#557f2d", "#2d7f5e"]labels
= ["Lasso", "Random Forest", "Decision Tree"]barWidth
= 1lefts
= 0fig,ax
= plt.subplots(figsize=(8,4.5),dpi=200)for bars, col, label in zip([bars1, bars2, bars3], colors, labels):plt.barh(r, bars, left
=lefts, color=col, edgecolor="white", height=barWidth, label=label)lefts
+= barsplt.legend()
plt.ylim(
-0.5, len(bars) - 0.5)ax.text(.
91,-.08,"Visualization by DataCharm
",transform = ax.transAxes,ha
="center", va="center",fontsize = 7,color="black")plt.savefig(r
"F:DataCharm商业艺术图表仿制PIEE_ChartsChina USPIEE_china_example.png",width=8,height=4,dpi
=900,bbox_inches="tight")plt.show()
结果如下:
- 文本自动添加 虽然代码中有明确解释,但这里我们还是单独进行展示:
for bars, col,text,text2 in zip(us["2017 imports, in actual dollars2"], us_color,us_list,us_text):ax.barh(
3, bars, left=lefts_us, color=col, height=barWidth,align="center")lefts_us
+= barsif lefts_us == us["2017 imports, in actual dollars2"][0]:ax.text(bars
/2,3,text,color="k",fontweight="extra bold",size=13,ha="center",va="center")ax.text(bars
/2,3.4,text2,color="k",fontweight="light",size=8,ha="center",va="center")else:ax.text(lefts_us
-bars/2,3,text,color="k",fontweight="extra bold",size=13,ha="center",va="center")ax.text(lefts_us
-bars/2,3.4,text2,color="k",fontweight="light",size=8,ha="center",va="center")
注意里面的if条件语句设置哦!
以上是 Pythonmatplotlib数据可视化:商业图表条形图 的全部内容, 来源链接: utcz.com/z/530945.html