爬取NBA球员生涯数据,并在Excel中可视化显示[Python基础]
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。
以下文章最早早起Python ,作者投稿君
前言
大家好,在之前我们讲过如何使用Python内置一个带有GUI的爬虫小程序,很多这里将迎合热点,延续上次的NBA爬虫GUI,探讨如何爬取虎扑NBA官网数据。 并且将数据写入Excel中同时自动生成折线图,主要有以下几个步骤
本文将分为以下两个部分进行讲解
- 在虎扑NBA官网球员页面中进行爬虫,获取球员数据。
- 清洗整理爬取的球员数据,进行进行可视化。
项目主要涉及的Python模块:
- requests
- pandas
- bs4
爬虫部分
爬虫部分整理思路如下
观察URL1的源代码找到球队名称与对应URL2观察URL2的源代码找到球员对应的URL3观察URL3源代码找到对应球员基本信息与比赛数据并进行筛选存储
其实爬虫就是在html上操作,而html的结构很简单就只有一个,就是一个大框套一个小框,小框在套小框,这样的一层层叠。
目标URL如下:
网址1:http://nba.hupu.com/players/URL2(此处以湖人球队为例):https:
//nba.hupu.com/players/lakersURL3(此处以詹姆斯为例):https:
//nba.hupu.com/players/lebronjames-650.html
先引用模块
from bs4 import BeautifulSoupimport requestsimport xlsxwriterimport os
查看URL1源代码,可以看到球队名词及其对应的URL2在span标签中<span class><a href = “...">下,看上去找到它的父框与祖父框,下面的思路都是如此,图如下:
此时,可以通过requests模块与bs4模块进行有目的性的索引,得到球队的名称列表。
def Teamlists(url):TeamName
=[]TeamURL
=[]GET
=requests.get(URL1)soup
=BeautifulSoup(GET.content,"lxml")lables
=soup.select("html body div div div ul li span a") for lable in lables:ballname
=lable.get_text()TeamName.append(ballname)
print(ballname)teamname
=input("请输入想查询的球队名:")#此处可变为GUI界面中的按键值c=TeamName.index(teamname)
for item in lables:
HREF=item.get("href")
TeamURL.append(HREF)
URL2=TeamURL[c]
return URL2
就此得到了对应球队的URL2,接着观察URL2网页的内容,可以看到球员名称在标签a中<a target = "_blank" href = ....>下,同时也放置着对应球员的URL3,如下图:
此时,故依然通过requests模块与bs4模块进行相对应的索引,得到球员名称列表以及对应的URL3。
#自定义函数获取队员列表和对应的URLdef playerlists(URL2):
PlayerName=[]
PlayerURL=[]
GET2=requests.get(URL1)
soup2=BeautifulSoup(GET2.content,"lxml")
lables2=soup2.select("html body div div table tbody tr td b a")
for lable2 in lables2:
playername=lable2.get_text()
PlayerName.append(playername)
print(playername)
name=input("请输入球员名:") #此处可变为GUI界面中的按键值
d=PlayerName.index(name)
for item2 in lables2:
HREF2=item2.get("href")
PlayerURL.append(HREF2)
URL3=PlayerURL[d]
return URL3,name
现在就此得到了对应球队的URL3,接着观察URL3页面的内容,可以看到球员基本信息在标签p下,球员常规赛生涯数据与季后赛生涯数据在标签td下,如下图:
同样,依然通过requests模块与bs4模块进行相对应的索引,得到球员基本信息与职业数据,而对于球员的常规赛与季候赛的职业数据将进行筛选与储存,得到数据列表。
def Competition(URL3):data
=[]GET3
=requests.get(URL3)soup3
=BeautifulSoup(GET3.content,"lxml")lables3
=soup3.select("html body div div div div div div div div p")lables4
=soup3.select("div div table tbody tr td")for lable3 in lables3:introduction
=lable3.get_text() print(introduction) #球员基本信息for lable4 in lables4:
competition=lable4.get_text()
data.append(competition)
for i in range(len(data)):
if data[i]=="职业生涯常规赛平均数据":
a=data[i+31]
a=data.index(a)
del(data[:a])
for x in range(len(data)):
if data[x]=="职业生涯季后赛平均数据":
b=data[x]
b=data.index(b)
del(data[b:])
return data
通过上述网络爬虫得到了以下的数据,提供可视化数据的同时替换绑定之后的GUI界面按键事件:
- 获取NBA中的所有球队的标准名称;
- 通过指定的一只球队获取球队中所有球员的标准名称;
- 通过指定的球员获取到对应的基本信息以及常规赛与季后赛数据;
可视化部分
思路:创建文件夹创建表格和折线图
自定义函数创建表格,运用os模块进行编写,返回已创建文件夹的路径,代码如下:
def file_add(path): #此时的内函数path可与GUI界面的Statictext绑定creatpath=path+"Basketball"
try:
ifnot os.path.isdir(creatpath):
os.makedirs(creatpath)
except:
print("文件夹存在")
return creatpath
运用xlsxwriter模块在creatpath路径下的自定义函数创建excel表格同时添加数据与构造折线图,代码如下:
def player_chart(name,data,creatpath):#此为表格名称——球员名称+chartEXCEL=xlsxwriter.Workbook(creatpath+""+name+"chart.xlsx")
worksheet=EXCEL.add_worksheet(name)
bold=EXCEL.add_format({"bold":1})
headings=data[:18]
worksheet.write_row("A1",headings,bold) #写入表头
num=(len(data))//18
a=0
for i in range(num):
a=a+18
c=a+18
i=i+1
worksheet.write_row("A"+str(i+1),data[a:c]) #写入数据
chart_col = EXCEL.add_chart({"type": "line"}) #创建一个折线图
chart_col.add_series({
"name": "="+name+"!$R$1", #设置折线描述名称
"categories":"="+name+"!$A$2:$A$"+str(num), #设置图表类别标签范围
"values": "="+name+"!$R$2:$R$"+str(num-1), #设置图表数据范围
"line": {"color": "red"}, }) #设置图表线条属性
#设置图标的标题和想x,y轴信息
chart_col.set_title({"name": name+"生涯常规赛平均得分"})
chart_col.set_x_axis({"name": "年份 (年)"})
chart_col.set_y_axis({"name": "平均得分(分)"})
chart_col.set_style(1) #设置图表风格
worksheet.insert_chart("A14", chart_col, {"x_offset":25, "y_offset":3,}) #把图标插入工作台中并设置偏移
EXCEL.close()
数据表格效果展现,以詹姆斯为例如下
并且然后打开自动生成的Excel,对应的折线图就直接展现出来,无需再次整理!
现在结合任务一的网络爬虫与任务二的数据可视化,可以得到实时的球员常规赛数据与季后赛数据汇总,同时还有实时球员生涯折线图。便可以与上次的GUI界面任务设计中的”可视化”按钮事件绑定,研究者的读者可以自己进一步研究!
以上是 爬取NBA球员生涯数据,并在Excel中可视化显示[Python基础] 的全部内容, 来源链接: utcz.com/z/530499.html