Window7 开发 Spark 应用(JAVA版本)
WordCount是大数据学习最好的入门demo,今天就一起开发java版本的WordCount,然后提交到Spark3.0.0环境运行;
版本信息
OS: Window7
JAVA:1.8.0_181
Hadoop:3.2.1
Spark: 3.0.0-preview2-bin-hadoop3.2
IDE: IntelliJ IDEA 2019.2.4 x64
服务器搭建
Hadoop:CentOS7 部署 Hadoop 3.2.1 (伪分布式)
Spark:CentOS7 安装 Spark3.0.0-preview2-bin-hadoop3.2
示例源码下载
Spark分词应用开发示例代码
应用开发
1. 本地新建一个Spark项目,POM.xml 内容如下:
<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.phpdragon</groupId>
<artifactId>spark-example</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<spark.version>2.4.5</spark.version>
<spark.scala.version>2.12</spark.scala.version>
</properties>
<dependencies>
<!-- Spark dependency Start -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_${spark.scala.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>com.github.fommil.netlib</groupId>
<artifactId>all</artifactId>
<version>1.1.2</version>
<type>pom</type>
</dependency>
<!-- Spark dependency End -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.47</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.12</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.68</version>
</dependency>
</dependencies>
<build>
<sourceDirectory>src/main/java</sourceDirectory>
<testSourceDirectory>src/test/java</testSourceDirectory>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass></mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
<execution>
<goals>
<goal>exec</goal>
</goals>
</execution>
</executions>
<configuration>
<executable>java</executable>
<includeProjectDependencies>false</includeProjectDependencies>
<includePluginDependencies>false</includePluginDependencies>
<classpathScope>compile</classpathScope>
<mainClass>com.phpragon.spark.WordCount</mainClass>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
</project>
2. 编写分词统计代码:
import lombok.extern.slf4j.Slf4j;import org.apache.commons.lang3.StringUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import scala.Tuple2;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
import java.util.List;
/**
* @Description: Spark的分词统计
* @author: phpdragon@qq.com
* @date: 2020/03/30 17:21
*/
@Slf4j
public class WordCount {
public static void main(String[] args) {
if(null==args
|| args.length<3
|| StringUtils.isEmpty(args[0])
|| StringUtils.isEmpty(args[1])
|| StringUtils.isEmpty(args[2])) {
log.error("invalid params!");
}
String hdfsHost = args[0];
String hdfsPort = args[1];
String textFileName = args[2];
// String hdfsHost = "172.16.1.126";
// String hdfsPort = "9000";
// String textFileName = "test.txt";
SparkConf sparkConf = new SparkConf().setAppName("Spark WordCount Application(Java)");
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);
String hdfsBasePath = "hdfs://" + hdfsHost + ":" + hdfsPort;
//文本文件的hdfs路径
String inputPath = hdfsBasePath + "/input/" + textFileName;
//输出结果文件的hdfs路径
String outputPath = hdfsBasePath + "/output/" + new SimpleDateFormat("yyyyMMdd_HHmmss").format(new Date());
log.info("input path : {}", inputPath);
log.info("output path : {}", outputPath);
log.info("import text");
//导入文件
JavaRDD<String> textFile = javaSparkContext.textFile(inputPath);
log.info("do map operation");
JavaPairRDD<String, Integer> counts = textFile
//每一行都分割成单词,返回后组成一个大集合
.flatMap(s -> Arrays.asList(s.split(" ")).iterator())
//key是单词,value是1
.mapToPair(word -> new Tuple2<>(word, 1))
//基于key进行reduce,逻辑是将value累加
.reduceByKey((a, b) -> a + b);
log.info("do convert");
//先将key和value倒过来,再按照key排序
JavaPairRDD<Integer, String> sorts = counts
//key和value颠倒,生成新的map
.mapToPair(tuple2 -> new Tuple2<>(tuple2._2(), tuple2._1()))
//按照key倒排序
.sortByKey(false);
log.info("take top 10");
//取前10个
List<Tuple2<Integer, String>> top10 = sorts.take(10);
StringBuilder sbud = new StringBuilder("top 10 word :\n");
//打印出来
for(Tuple2<Integer, String> tuple2 : top10){
sbud.append(tuple2._2())
.append("\t")
.append(tuple2._1())
.append("\n");
}
log.info(sbud.toString());
System.out.println(sbud.toString());
log.info("merge and save as file");
//分区合并成一个,再导出为一个txt保存在hdfs
javaSparkContext.parallelize(top10).coalesce(1).saveAsTextFile(outputPath);
log.info("close context");
//关闭context
javaSparkContext.close();
}
}
3. 调整日志显示级别
Spark自带的输出日志太多了,略烦,那么还可以修改输出的级别限制输出,主要是把log4j.rootCategory=INFO, console改为log4j.rootCategory=WARN, console即可抑制Spark把INFO级别的日志打到控制台上。
而如果要显示更全面的信息,可以把INFO改为DEBUG。
log4j.properties内如如下:
log4j.rootLogger=${root.logger}root.logger=WARN,console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
shell.log.level=WARN
log4j.logger.org.eclipse.jetty=WARN
log4j.logger.org.spark-project.jetty=WARN
log4j.logger.org.spark-project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=INFO
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=INFO
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
log4j.logger.org.apache.spark.repl.Main=${shell.log.level}
log4j.logger.org.apache.spark.api.python.PythonGatewayServer=${shell.log.level}
这个文件需要放到程序能自动读取加载的地方,比如resources目录下:
服务端调试
1. 在Hadoop服务器上新建目录 input、output、spark/history
/data/server/hadoop/3.2.1/bin/hdfs dfs -mkdir /input/data/server/hadoop/3.2.1/bin/hdfs dfs -mkdir /output
/data/server/hadoop/3.2.1/bin/hdfs dfs -mkdir /spark
/data/server/hadoop/3.2.1/bin/hdfs dfs -mkdir /spark/history
2.上传测试文本至Hadoop服务上:
/data/server/hadoop/3.2.1/bin/hdfs dfs -put ~/data/server/hadoop/3.2.1/LICENSE.txt /input/test.txt
3.编译打包后代码,上传 spark-example-1.0-SNAPSHOT.jar 文件至Spark服务。执行下面的命令,命令的最后三个参数,是java的main方法的入参,具体的使用请参照WordCount类的源码:
/home/data/server/spark/3.0.0-preview2-bin-hadoop3.2/bin/spark-submit \--master spark://172.16.1.126:7077 \
--class com.phpragon.spark.WordCount \
--executor-memory 512m \
--total-executor-cores 2 \
./spark-example-1.0-SNAPSHOT.jar \
172.16.1.126 \
9000 \
test.txt
执行结果:
4.在hadoop服务器执行查看文件的命令,可见/output下新建了子目录 20200330_172721:
[root@localhost spark]# hdfs dfs -ls /outputFound 1 items
drwxr-xr-x - Administrator supergroup 0 2020-03-30 05:27 /output/20200330_172721
5.查看子目录,发现里面有两个文件:
[root@localhost spark]# hdfs dfs -ls /output/20200330_172721Found 2 items
-rw-r--r-- 3 Administrator supergroup 0 2020-03-30 05:27 /output/20200330_172721/_SUCCESS
-rw-r--r-- 3 Administrator supergroup 93 2020-03-30 05:27 /output/20200330_172721/part-00000
上面看到的 /output/20200330_172721/part-00000就是输出结果,用cat命令查看其内容:
[root@localhost spark]# hdfs dfs -cat /output/20200330_172721/part-00000(4149,)
(1208,the)
(702,of)
(512,or)
(481,to)
(409,and)
(308,this)
(305,in)
(277,a)
(251,OR)
可见与前面控制台输出的一致;
6. 在Spark的web页面,可见刚刚执行的任务信息:
至此,第一个spark应用的开发和运行就完成了。但时间开发情况下不可能每次都编译打包提交运行,这样效率太低,不建议这样开发程序。
本地调试
1.增加红色部分代码,设置为本地模式 。
SparkConf sparkConf = new SparkConf().setMaster("local[*]").setAppName("Spark WordCount Application(Java)");
2. 右键执行后报错:
20/03/30 16:35:57 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable20/03/30 16:35:57 ERROR util.Shell: Failed to locate the winutils binary in the hadoop binary path
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
出现这个问题的原因是我们在windows上模拟开发环境,但并没有真正的搭建hadoop和spark
解决办法:当然也并不需要我们真的去搭建hadoop,其实不用理它也是可以运行下去的。winutils.exe下载,链接:https://pan.baidu.com/s/1YZDqd_MkOgnfQT3YM-V3aQ 提取码:xi44
放到任意的目录下,我这里是放到了D:\Server\hadoop\3.2.1\bin 目录下:
重启电脑后,右键执行main方法:
PS:
官方手册
第一个spark应用开发详解(java版)
编程指南—の—详解加实践
Spark spark-submit 提交的几种模式
https://www.cnblogs.com/dhName/p/10579045.html
以上是 Window7 开发 Spark 应用(JAVA版本) 的全部内容, 来源链接: utcz.com/z/393615.html