PCA人脸识别的python实现
这几天看了看PCA及其人脸识别的流程,并在网络上搜相应的python代码,有,但代码质量不好,于是自己就重新写了下,对于att_faces数据集的识别率能达到92.5%~98.0%(40种类型,每种随机选5张训练,5张识别),全部代码如下,不到50行哦。
# -*- coding: utf-8 -*-import numpy as np
import os, glob, random, cv2
def pca(data,k):
data = np.float32(np.mat(data))
rows,cols = data.shape #取大小
data_mean = np.mean(data,0) #求均值
Z = data - np.tile(data_mean,(rows,1))
D,V = np.linalg.eig(Z*Z.T ) #特征值与特征向量
V1 = V[:, :k] #取前k个特征向量
V1 = Z.T*V1
for i in xrange(k): #特征向量归一化
V1[:,i] /= np.linalg.norm(V1[:,i])
return np.array(Z*V1),data_mean,V1
def loadImageSet(folder=u\'E:/迅雷下载/faceProcess/att_faces\', sampleCount=5): #加载图像集,随机选择sampleCount张图片用于训练
trainData = []; testData = []; yTrain=[]; yTest = [];
for k in range(40):
folder2 = os.path.join(folder, \'s%d\' % (k+1))
data = [cv2.imread(d.encode(\'gbk\'),0) for d in glob.glob(os.path.join(folder2, \'*.pgm\'))]
sample = random.sample(range(10), sampleCount)
trainData.extend([data[i].ravel() for i in range(10) if i in sample])
testData.extend([data[i].ravel() for i in range(10) if i not in sample])
yTest.extend([k]* (10-sampleCount))
yTrain.extend([k]* sampleCount)
return np.array(trainData), np.array(yTrain), np.array(testData), np.array(yTest)
def main():
xTrain_, yTrain, xTest_, yTest = loadImageSet()
num_train, num_test = xTrain_.shape[0], xTest_.shape[0]
xTrain,data_mean,V = pca(xTrain_, 50)
xTest = np.array((xTest_-np.tile(data_mean,(num_test,1))) * V) #得到测试脸在特征向量下的数据
yPredict =[yTrain[np.sum((xTrain-np.tile(d,(num_train,1)))**2, 1).argmin()] for d in xTest]
print u\'欧式距离法识别率: %.2f%%\'% ((yPredict == yTest).mean()*100)
svm = cv2.SVM() #支持向量机方法
svm.train(np.float32(xTrain), np.float32(yTrain), params = {\'kernel_type\':cv2.SVM_LINEAR})
yPredict = [svm.predict(d) for d in np.float32(xTest)]
#yPredict = svm.predict_all(xTest.astype(np.float64))
print u\'支持向量机识别率: %.2f%%\' % ((yPredict == yTest).mean()*100)
if __name__ ==\'__main__\':
main()
以上是 PCA人脸识别的python实现 的全部内容, 来源链接: utcz.com/z/388295.html