Python数据分析:Numpy学习笔记
Numpy学习笔记
ndarray多维数组
创建
import numpy as npnp.array([1,2,3,4])
np.array([1,2,3,4,],[5,6,7,8])
np.zeros(8)
np.zeros(3,4)
np.ones(4)
np.one_like([1,2,3,4])
np.empty((2,2,2))
np.arange(10)
数组创建函数
- arange
- ones/ones_like
- zeros/zeros_like
- empty/empty_like
- eye/identity
属性
- ndim: 轴的个数
- shape: 数组的维度
- size: 元素总个数
- dtype: 数据类型
- itemsize: 每个元素的字节大小
数据类型
- float
- int
- complex
- bool
- string_
- object
类型转换
attr1.astype(np.float64) # np.float64和'float64'都可以attr1.astype('string_')
attr1.astype('int32')
数组变换
- reshage: 变换
- flattern: 扁平
- ravel: 散开
arr1 = np.arrary(9)arr.reshape((3,3))
arr.reshape((3, -1)) # -1根据数据数据本身/3决定
3种变换(数据重塑)都不会修改原数组
- concatenate: 合并
- split: 拆分
arr1 = np.arrage(12).reshape(3, 4)arr2 = np.arrange(12,24).reshape(3,4)
np.concatenate([arr1, arr2], axis=0) # 相当于np.vstack([arr1, arr2])
np.concatenate([arr1, arr2], axis=1) # 相当于np.hstack([arr1, arr2])
np.split(arr1, [2, 4])
- transpose: 数组转制(只支持2维)
- swapaxes: 轴对换(支持多维)
arr1 = np.arange(12).reshape(3,4)arr1.transpose((1,0)) # 相当于 arr1.T
arr2 = np.arrage(16).reshape(2,2,4)
arr2.swapaxes(1,2) # 交换y,z轴
随机函数(random)
- rand: 均匀分布的样品值
- randint: 随机整数
- randn: 平均数为0, 标准差为1的正态分布随机数
- normal: 指定平均数和标准差的正态分布数组
- seed: 随机种子
- permutation: 随机排序, 不改变原数组
- shuffle: 随机排序,改变原数组
- uniform(low, high, size): 均匀分布的数组
- poisson(lam, size): 泊松分布数组
arr1 = np.random.randint(100, 200, size=(5,4))np.random.randn(2,3,5)
np.random.normal(4,5,size=(3,5))
np.random.permutation(arr1)
np.random.shuffle(arr1)
数组的索引和切片
- 索引支持多维索引arr1[2,3] 或arr1[2][3]
- 索引值为原数组的视图, 修改arr1[2,3]会修改原数组(如并不想修改需使用arr1[2,3].copy())
- 切片支持多维切片arr1[2:, :-1]
- 布尔型索引 datas[fruits==0] = 1 # 筛选赋值
- 花式索引: arr[np.ix_([3,2],[2,1]) # arr[[3,2]][:,[2,1]]
数组运算
标量运算
arr1 = np.array([1, 2, 3])arr1 * 10
arr1 * arr1
arr1 - arr1
通用函数
- abs: 绝对值
- square: 平方
- add: 两个数组相加
- minimum: 计算最小值
- modf: 分割整数部分和小数部分
可以指定axis轴
条件逻辑运算
- np.where(cond, arr1, arr2) # 类似3元表达式
统计运算
- sum: 求和
- mean: 求算术平均数
- std/var: 求标准差/方差
- min/max: 最小数/最大数
- argmin/argmax: 最小数/最大数索引
- cumsum: 所有元素的累加和
- cumprod 所有元的累计积
- all/any: 布尔类型运算
集合运算
- np.unique: 找出所有唯一值,并排序
- np.inld: 是否包含指定的值
- np.intersect1d: 公共元素
- np.union1d: 并集
- np.setdiff1d: 差集
- setxor1d: 交集取反
线性代数
- np.dot: 点积
- from numpy.linalg import det ...
数组存取
- np.loadtxt: 读取
arr1 = np.loadtxt('1.csv', delimiter=',')
示例: 图像变换
以上是 Python数据分析:Numpy学习笔记 的全部内容, 来源链接: utcz.com/z/387928.html