详解PyTorch批训练及优化器比较

一、PyTorch批训练

1. 概述

PyTorch提供了一种将数据包装起来进行批训练的工具——DataLoader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦。

import torch

import torch.utils.data as Data

torch.manual_seed(1) # 设定随机数种子

BATCH_SIZE = 5

x = torch.linspace(1, 10, 10)

y = torch.linspace(0.5, 5, 10)

# 将数据转换为torch的dataset格式

torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)

# 将torch_dataset置入Dataloader中

loader = Data.DataLoader(

dataset=torch_dataset,

batch_size=BATCH_SIZE, # 批大小

# 若dataset中的样本数不能被batch_size整除的话,最后剩余多少就使用多少

shuffle=True, # 是否随机打乱顺序

num_workers=2, # 多线程读取数据的线程数

)

for epoch in range(3):

for step, (batch_x, batch_y) in enumerate(loader):

print('Epoch:', epoch, '|Step:', step, '|batch_x:',

batch_x.numpy(), '|batch_y', batch_y.numpy())

'''''

shuffle=True

Epoch: 0 |Step: 0 |batch_x: [ 6. 7. 2. 3. 1.] |batch_y [ 3. 3.5 1. 1.5 0.5]

Epoch: 0 |Step: 1 |batch_x: [ 9. 10. 4. 8. 5.] |batch_y [ 4.5 5. 2. 4. 2.5]

Epoch: 1 |Step: 0 |batch_x: [ 3. 4. 2. 9. 10.] |batch_y [ 1.5 2. 1. 4.5 5. ]

Epoch: 1 |Step: 1 |batch_x: [ 1. 7. 8. 5. 6.] |batch_y [ 0.5 3.5 4. 2.5 3. ]

Epoch: 2 |Step: 0 |batch_x: [ 3. 9. 2. 6. 7.] |batch_y [ 1.5 4.5 1. 3. 3.5]

Epoch: 2 |Step: 1 |batch_x: [ 10. 4. 8. 1. 5.] |batch_y [ 5. 2. 4. 0.5 2.5]

shuffle=False

Epoch: 0 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]

Epoch: 0 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]

Epoch: 1 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]

Epoch: 1 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]

Epoch: 2 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]

Epoch: 2 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]

'''

2. TensorDataset

classtorch.utils.data.TensorDataset(data_tensor, target_tensor)

TensorDataset类用来将样本及其标签打包成torch的Dataset,data_tensor,和target_tensor都是tensor。

3. DataLoader

classtorch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,num_workers=0, collate_fn=<function default_collate>, pin_memory=False,drop_last=False)

dataset就是Torch的Dataset格式的对象;batch_size即每批训练的样本数量,默认为;shuffle表示是否需要随机取样本;num_workers表示读取样本的线程数。

二、PyTorch的Optimizer优化器

本实验中,首先构造一组数据集,转换格式并置于DataLoader中,备用。定义一个固定结构的默认神经网络,然后为每个优化器构建一个神经网络,每个神经网络的区别仅仅是优化器不同。通过记录训练过程中的loss值,最后在图像上呈现得到各个优化器的优化过程。

代码实现:

import torch

import torch.utils.data as Data

import torch.nn.functional as F

from torch.autograd import Variable

import matplotlib.pyplot as plt

torch.manual_seed(1) # 设定随机数种子

# 定义超参数

LR = 0.01 # 学习率

BATCH_SIZE = 32 # 批大小

EPOCH = 12 # 迭代次数

x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)

y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))

#plt.scatter(x.numpy(), y.numpy())

#plt.show()

# 将数据转换为torch的dataset格式

torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)

# 将torch_dataset置入Dataloader中

loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE,

shuffle=True, num_workers=2)

class Net(torch.nn.Module):

def __init__(self):

super(Net, self).__init__()

self.hidden = torch.nn.Linear(1, 20)

self.predict = torch.nn.Linear(20, 1)

def forward(self, x):

x = F.relu(self.hidden(x))

x = self.predict(x)

return x

# 为每个优化器创建一个Net

net_SGD = Net()

net_Momentum = Net()

net_RMSprop = Net()

net_Adam = Net()

nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]

# 初始化优化器

opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)

opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)

opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)

opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))

optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]

# 定义损失函数

loss_function = torch.nn.MSELoss()

losses_history = [[], [], [], []] # 记录training时不同神经网络的loss值

for epoch in range(EPOCH):

print('Epoch:', epoch + 1, 'Training...')

for step, (batch_x, batch_y) in enumerate(loader):

b_x = Variable(batch_x)

b_y = Variable(batch_y)

for net, opt, l_his in zip(nets, optimizers, losses_history):

output = net(b_x)

loss = loss_function(output, b_y)

opt.zero_grad()

loss.backward()

opt.step()

l_his.append(loss.data[0])

labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']

for i, l_his in enumerate(losses_history):

plt.plot(l_his, label=labels[i])

plt.legend(loc='best')

plt.xlabel('Steps')

plt.ylabel('Loss')

plt.ylim((0, 0.2))

plt.show()

实验结果:

由实验结果可见,SGD的优化效果是最差的,速度很慢;作为SGD的改良版本,Momentum表现就好许多;相比RMSprop和Adam的优化速度就非常好。实验中,针对不同的优化问题,比较各个优化器的效果再来决定使用哪个。

三、其他补充

1. Python的zip函数

zip函数接受任意多个(包括0个和1个)序列作为参数,返回一个tuple列表。

x = [1, 2, 3]

y = [4, 5, 6]

z = [7, 8, 9]

xyz = zip(x, y, z)

print xyz

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

x = [1, 2, 3]

x = zip(x)

print x

[(1,), (2,), (3,)]

x = [1, 2, 3]

y = [4, 5, 6, 7]

xy = zip(x, y)

print xy

[(1, 4), (2, 5), (3, 6)]

以上是 详解PyTorch批训练及优化器比较 的全部内容, 来源链接: utcz.com/z/362175.html

回到顶部