python numpy 显示图像阵列的实例

每次要显示图像阵列的时候,使用自带的 matplotlib 或者cv2 都要设置一大堆东西,subplot,fig等等,突然想起 可以利用numpy 的htstack() 和 vstack() 将图片对接起来组成一张新的图片。因此写了写了下面的函数。做了部分注释,一些比较绕的地方可以自行体会。

大致流程包括:

1、输入图像列表 img_list

2、show_type : 最终的显示方式,输入为行数列数 (例如 show_type=22 ,则最终显示图片为两行两列)

3、basic_shape, 图片resize的尺寸。

def image_show( img_list, show_type, basic_size=[300,500]):

'''

img_list contains the images that need to be stitched,

the show_typ contains the final shape of the stitched one, ie, 12 for 1 row 2 cols.

basic_size : all input image need to be reshaped first.

'''

# reshap row and col number.

n_row, n_col = basic_size

#print n_row,n_col

# num of pixels need to be filled vertically and horizontally.

h_filling = 10

v_filling = 10

# image resize.

resize_list=[]

for i in img_list:

temp_img = cv2.resize( i, ( n_col, n_row ), interpolation = cv2. INTER_CUBIC )

resize_list.append( temp_img )

# resolve the final stitched image 's shape.

n_row_img, n_col_img = show_type/10, show_type%10

#print n_row_img, n_col_img

# the blank_img and the image need to be filled should be defined firstly.

blank_img= np.ones([n_row,n_col])*255

blank_img= np.array( blank_img, np.uint8 )

v_img= np.array( np.ones([n_row,v_filling])*255, np.uint8)

h_img= np.array( np.ones ([ h_filling, n_col_img*n_col+(n_col_img-1)*h_filling])*255, np.uint8)

# images in the image list should be dispatched into different sub-list

# in each sub list the images will be connected horizontally.

recombination_list=[]

temp_list=[]

n_list= len(resize_list)

for index, i in enumerate ( xrange (n_list)):

if index!= 0 and index % n_col_img==0 :

recombination_list.append(temp_list)

temp_list = []

if len(resize_list)> n_col_img:

pass

else:

recombination_list.append(resize_list)

break

temp_list.append( resize_list.pop(0))

if n_list== n_col_img:

recombination_list.append(temp_list)

#print len(temp_list)

#print temp_list

# stack the images horizontally.

h_temp=[]

for i in recombination_list:

#print len(i)

if len(i)==n_col_img:

temp_new_i=[ [j,v_img] if index+1 != len(i) else j for index, j in enumerate (i) ]

new_i=[ j for i in temp_new_i[:-1] for j in i ]

new_i.append( temp_new_i[-1])

h_temp.append(np.hstack(new_i))

else:

add_n= n_col_img - len(i)

for k in range(add_n):

i.append(blank_img)

temp_new_i=[ [j,v_img] if index+1 != len(i) else j for index, j in enumerate (i) ]

new_i=[ j for i in temp_new_i[:-1] for j in i ]

new_i.append( temp_new_i[-1])

h_temp.append(np.hstack(new_i))

#print len(h_temp)

#print h_temp

temp_full_img= [ [j, h_img ] if index+1 != len(h_temp) else j for index, j in enumerate(h_temp) ]

if len(temp_full_img) > 2:

full_img= [ j for i in temp_full_img[:-1] for j in i ]

full_img.append(temp_full_img[-1])

else:

full_img= [ j for i in temp_full_img for j in i ]

#full_img.append(temp_full_img[-1])

if len(full_img)>1:

return np.vstack( full_img)

else:

return full_img

最终输入情况和结果如下图:

第一组结果图:自行看输入

第二组结果图。

以上这篇python numpy 显示图像阵列的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 python numpy 显示图像阵列的实例 的全部内容, 来源链接: utcz.com/z/359941.html

回到顶部