如何基于python实现归一化处理
这篇文章主要介绍了如何基于python实现归一化处理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
一、定义
归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速。
二、目的
不同评价指标往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果,为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。其具体针对的是奇异样本数据,奇异样本数据指的是相对于其他输入样本特别大或特别小的样本矢量,如[0.34,0.51,0.44,222][0.34,0.51,0.44,128]中最后一列元素就是奇异样本数据。
三、常见标准化方法
1.最大-最小标准化映射到区间[0,1]
2.Z-score标准化结果聚集在0附近方差为1
四、矩阵的归一化
矩阵的列归一化,就是将矩阵每一列的值,除以每一列所有元素平方和的绝对值,这样做的结果就是,矩阵每一列元素的平方和为1了。
五、python归一化
其中参数axis=0表示列也是跨行的意思axis=1表示行也是跨列的意思
fromsklearn.preprocessingimportnormalize
data=np.array([
[1000,10,0.5],
[765,5,0.35],
[800,7,0.09],])
data=normalize(data,axis=0,norm='max')
print(data)
>>[[1.1.1.]
[0.7650.50.7]
[0.80.70.18]]
以上是 如何基于python实现归一化处理 的全部内容, 来源链接: utcz.com/z/358558.html