pandas DataFrame 交集并集补集的实现

1.场景,对于colums都相同的dataframe做过滤的时候

例如:

df1 = DataFrame([['a', 10, '男'],

['b', 11, '男'],

['c', 11, '女'],

['a', 10, '女'],

['c', 11, '男']],

columns=['name', 'age', 'sex'])

df2 = DataFrame([['a', 10, '男'],

['b', 11, '女']],

columns=['name', 'age', 'sex'])

取交集:print(pd.merge(df1,df2,on=['name', 'age', 'sex']))

取并集:print(pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))

取差集(从df1中过滤df1在df2中存在的行):

df1 = df1.append(df2)

df1 = df1.append(df2)

df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False)

print(df1)

代码:

# -*- coding:utf-8 -*-

__version__ = '1.0.0.0'

"""

@brief : 简介

@details: 详细信息

@author : zhphuang

@date : 2018-10-29

"""

import pandas as pd

from pandas import *

df1 = DataFrame([['a', 10, '男'],

['b', 11, '男'],

['c', 11, '女'],

['a', 10, '女'],

['c', 11, '男']],

columns=['name', 'age', 'sex'])

print("df1:\n%s\n\n" % df1)

df2 = DataFrame([['a', 10, '男'],

['b', 11, '女']],

columns=['name', 'age', 'sex'])

print("df2:\n%s\n\n" % df2)

# 取交集

print("交集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex']))

# 取并集

print("并集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))

# 从df1中过滤df1在df2中存在的行,也就是取补集

df1 = df1.append(df2)

df1 = df1.append(df2)

print("补集(从df1中过滤df1在df2中存在的行):\n%s\n\n" % df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False))

截图

以上是 pandas DataFrame 交集并集补集的实现 的全部内容, 来源链接: utcz.com/z/353839.html

回到顶部