Tensorflow使用支持向量机拟合线性回归

支持向量机可以用来拟合线性回归。

相同的最大间隔(maximum margin)的概念应用到线性回归拟合。代替最大化分割两类目标是,最大化分割包含大部分的数据点(x,y)。我们将用相同的iris数据集,展示用刚才的概念来进行花萼长度与花瓣宽度之间的线性拟合。

相关的损失函数类似于max(0,|yi-(Axi+b)|-ε)。ε这里,是间隔宽度的一半,这意味着如果一个数据点在该区域,则损失等于0。

# SVM Regression

#----------------------------------

#

# This function shows how to use TensorFlow to

# solve support vector regression. We are going

# to find the line that has the maximum margin

# which INCLUDES as many points as possible

#

# We will use the iris data, specifically:

# y = Sepal Length

# x = Pedal Width

import matplotlib.pyplot as plt

import numpy as np

import tensorflow as tf

from sklearn import datasets

from tensorflow.python.framework import ops

ops.reset_default_graph()

# Create graph

sess = tf.Session()

# Load the data

# iris.data = [(Sepal Length, Sepal Width, Petal Length, Petal Width)]

iris = datasets.load_iris()

x_vals = np.array([x[3] for x in iris.data])

y_vals = np.array([y[0] for y in iris.data])

# Split data into train/test sets

train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))

x_vals_train = x_vals[train_indices]

x_vals_test = x_vals[test_indices]

y_vals_train = y_vals[train_indices]

y_vals_test = y_vals[test_indices]

# Declare batch size

batch_size = 50

# Initialize placeholders

x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)

y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# Create variables for linear regression

A = tf.Variable(tf.random_normal(shape=[1,1]))

b = tf.Variable(tf.random_normal(shape=[1,1]))

# Declare model operations

model_output = tf.add(tf.matmul(x_data, A), b)

# Declare loss function

# = max(0, abs(target - predicted) + epsilon)

# 1/2 margin width parameter = epsilon

epsilon = tf.constant([0.5])

# Margin term in loss

loss = tf.reduce_mean(tf.maximum(0., tf.subtract(tf.abs(tf.subtract(model_output, y_target)), epsilon)))

# Declare optimizer

my_opt = tf.train.GradientDescentOptimizer(0.075)

train_step = my_opt.minimize(loss)

# Initialize variables

init = tf.global_variables_initializer()

sess.run(init)

# Training loop

train_loss = []

test_loss = []

for i in range(200):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = np.transpose([x_vals_train[rand_index]])

rand_y = np.transpose([y_vals_train[rand_index]])

sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

temp_train_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_train]), y_target: np.transpose([y_vals_train])})

train_loss.append(temp_train_loss)

temp_test_loss = sess.run(loss, feed_dict={x_data: np.transpose([x_vals_test]), y_target: np.transpose([y_vals_test])})

test_loss.append(temp_test_loss)

if (i+1)%50==0:

print('-----------')

print('Generation: ' + str(i+1))

print('A = ' + str(sess.run(A)) + ' b = ' + str(sess.run(b)))

print('Train Loss = ' + str(temp_train_loss))

print('Test Loss = ' + str(temp_test_loss))

# Extract Coefficients

[[slope]] = sess.run(A)

[[y_intercept]] = sess.run(b)

[width] = sess.run(epsilon)

# Get best fit line

best_fit = []

best_fit_upper = []

best_fit_lower = []

for i in x_vals:

best_fit.append(slope*i+y_intercept)

best_fit_upper.append(slope*i+y_intercept+width)

best_fit_lower.append(slope*i+y_intercept-width)

# Plot fit with data

plt.plot(x_vals, y_vals, 'o', label='Data Points')

plt.plot(x_vals, best_fit, 'r-', label='SVM Regression Line', linewidth=3)

plt.plot(x_vals, best_fit_upper, 'r--', linewidth=2)

plt.plot(x_vals, best_fit_lower, 'r--', linewidth=2)

plt.ylim([0, 10])

plt.legend(loc='lower right')

plt.title('Sepal Length vs Pedal Width')

plt.xlabel('Pedal Width')

plt.ylabel('Sepal Length')

plt.show()

# Plot loss over time

plt.plot(train_loss, 'k-', label='Train Set Loss')

plt.plot(test_loss, 'r--', label='Test Set Loss')

plt.title('L2 Loss per Generation')

plt.xlabel('Generation')

plt.ylabel('L2 Loss')

plt.legend(loc='upper right')

plt.show()

输出结果:

-----------

Generation: 50

A = [[ 2.91328382]] b = [[ 1.18453276]]

Train Loss = 1.17104

Test Loss = 1.1143

-----------

Generation: 100

A = [[ 2.42788291]] b = [[ 2.3755331]]

Train Loss = 0.703519

Test Loss = 0.715295

-----------

Generation: 150

A = [[ 1.84078252]] b = [[ 3.40453291]]

Train Loss = 0.338596

Test Loss = 0.365562

-----------

Generation: 200

A = [[ 1.35343242]] b = [[ 4.14853334]]

Train Loss = 0.125198

Test Loss = 0.16121

 

基于iris数据集(花萼长度和花瓣宽度)的支持向量机回归,间隔宽度为0.5

每次迭代的支持向量机回归的损失值(训练集和测试集)

直观地讲,我们认为SVM回归算法试图把更多的数据点拟合到直线两边2ε宽度的间隔内。这时拟合的直线对于ε参数更有意义。如果选择太小的ε值,SVM回归算法在间隔宽度内不能拟合更多的数据点;如果选择太大的ε值,将有许多条直线能够在间隔宽度内拟合所有的数据点。作者更倾向于选取更小的ε值,因为在间隔宽度附近的数据点比远处的数据点贡献更少的损失。

以上是 Tensorflow使用支持向量机拟合线性回归 的全部内容, 来源链接: utcz.com/z/352044.html

回到顶部