keras训练曲线,混淆矩阵,CNN层输出可视化实例

训练曲线

def show_train_history(train_history, train_metrics, validation_metrics):

plt.plot(train_history.history[train_metrics])

plt.plot(train_history.history[validation_metrics])

plt.title('Train History')

plt.ylabel(train_metrics)

plt.xlabel('Epoch')

plt.legend(['train', 'validation'], loc='upper left')

# 显示训练过程

def plot(history):

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

show_train_history(history, 'acc', 'val_acc')

plt.subplot(1, 2, 2)

show_train_history(history, 'loss', 'val_loss')

plt.show()

效果:

plot(history)

混淆矩阵

def plot_confusion_matrix(cm, classes,

title='Confusion matrix',

cmap=plt.cm.jet):

cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

plt.imshow(cm, interpolation='nearest', cmap=cmap)

plt.title(title)

plt.colorbar()

tick_marks = np.arange(len(classes))

plt.xticks(tick_marks, classes, rotation=45)

plt.yticks(tick_marks, classes)

thresh = cm.max() / 2.

for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):

plt.text(j, i, '{:.2f}'.format(cm[i, j]), horizontalalignment="center",

color="white" if cm[i, j] > thresh else "black")

plt.tight_layout()

plt.ylabel('True label')

plt.xlabel('Predicted label')

plt.show()

# 显示混淆矩阵

def plot_confuse(model, x_val, y_val):

predictions = model.predict_classes(x_val)

truelabel = y_val.argmax(axis=-1) # 将one-hot转化为label

conf_mat = confusion_matrix(y_true=truelabel, y_pred=predictions)

plt.figure()

plot_confusion_matrix(conf_mat, range(np.max(truelabel)+1))

其中y_val以one-hot形式输入

效果:

x_val.shape # (25838, 48, 48, 1)

y_val.shape # (25838, 7)

plot_confuse(model, x_val, y_val)

CNN层输出可视化

# 卷积网络可视化

def visual(model, data, num_layer=1):

# data:图像array数据

# layer:第n层的输出

data = np.expand_dims(data, axis=0) # 开头加一维

layer = keras.backend.function([model.layers[0].input], [model.layers[num_layer].output])

f1 = layer([data])[0]

num = f1.shape[-1]

plt.figure(figsize=(8, 8))

for i in range(num):

plt.subplot(np.ceil(np.sqrt(num)), np.ceil(np.sqrt(num)), i+1)

plt.imshow(f1[0, :, :, i] * 255, cmap='gray')

plt.axis('off')

plt.show()

num_layer : 显示第n层的输出

效果

visual(model, data, 1) # 卷积层

visual(model, data, 2) # 激活层

visual(model, data, 3) # 规范化层

visual(model, data, 4) # 池化层

补充知识:Python sklearn.cross_validation.train_test_split及混淆矩阵实现

sklearn.cross_validation.train_test_split随机划分训练集和测试集

一般形式:

train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和testdata,形式为:

X_train,X_test, y_train, y_test =

cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0)

参数解释:

train_data:所要划分的样本特征集

train_target:所要划分的样本结果

test_size:样本占比,如果是整数的话就是样本的数量

random_state:是随机数的种子。

随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1,其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

示例

fromsklearn.cross_validation import train_test_split

train= loan_data.iloc[0: 55596, :]

test= loan_data.iloc[55596:, :]

# 避免过拟合,采用交叉验证,验证集占训练集20%,固定随机种子(random_state)

train_X,test_X, train_y, test_y = train_test_split(train,

target,

test_size = 0.2,

random_state = 0)

train_y= train_y['label']

test_y= test_y['label']

plot_confusion_matrix.py(混淆矩阵实现实例)

print(__doc__)

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm, datasets

from sklearn.cross_validation import train_test_split

from sklearn.metrics import confusion_matrix

# import some data to play with

iris = datasets.load_iris()

X = iris.data

y = iris.target

# Split the data into a training set and a test set

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

# Run classifier, using a model that is too regularized (C too low) to see

# the impact on the results

classifier = svm.SVC(kernel='linear', C=0.01)

y_pred = classifier.fit(X_train, y_train).predict(X_test)

def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):

plt.imshow(cm, interpolation='nearest', cmap=cmap)

plt.title(title)

plt.colorbar()

tick_marks = np.arange(len(iris.target_names))

plt.xticks(tick_marks, iris.target_names, rotation=45)

plt.yticks(tick_marks, iris.target_names)

plt.tight_layout()

plt.ylabel('True label')

plt.xlabel('Predicted label')

# Compute confusion matrix

cm = confusion_matrix(y_test, y_pred)

np.set_printoptions(precision=2)

print('Confusion matrix, without normalization')

print(cm)

plt.figure()

plot_confusion_matrix(cm)

# Normalize the confusion matrix by row (i.e by the number of samples

# in each class)

cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

print('Normalized confusion matrix')

print(cm_normalized)

plt.figure()

plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')

plt.show()

以上这篇keras训练曲线,混淆矩阵,CNN层输出可视化实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 keras训练曲线,混淆矩阵,CNN层输出可视化实例 的全部内容, 来源链接: utcz.com/z/349322.html

回到顶部