TensorFlow中如何确定张量的形状实例

我们可以使用tf.shape()获取某张量的形状张量。

import tensorflow as tf

x = tf.reshape(tf.range(1000), [10, 10, 10])

sess = tf.Session()

sess.run(tf.shape(x))

Out[1]: array([10, 10, 10])

我们可以使用tf.shape()在计算图中确定改变张量的形状。

high = tf.shape(x)[0] // 2

width = tf.shape(x)[1] * 2

x_reshape = tf.reshape(x, [high, width, -1])

sess.run(tf.shape(x_reshape))

Out: array([ 5, 20, 10])

我们可以使用tf.shape_n()在计算图中得到若干个张量的形状。

y = tf.reshape(tf.range(504), [7,8,9])

sess.run(tf.shape_n([x, y]))

Out: [array([10, 10, 10]), array([7, 8, 9])]

我们可以使用tf.size()获取张量的元素个数。

sess.run([tf.size(x), tf.size(y)])

Out: [1000, 504]

tensor.get_shape()或者tensor.shape是无法在计算图中用于确定张量的形状。

In [20]: x.get_shape()

Out[20]: TensorShape([Dimension(10), Dimension(10), Dimension(10)])

In [21]: x.get_shape()[0]

Out[21]: Dimension(10)

In [22]: type(x.get_shape()[0])

Out[22]: tensorflow.python.framework.tensor_shape.Dimension

In [23]: x.get_shape()

Out[23]: TensorShape([Dimension(10), Dimension(10), Dimension(10)])

In [24]: sess.run(x.get_shape())

---------------------------------------------------------------------------

TypeError Traceback (most recent call last)

~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)

299 self._unique_fetches.append(ops.get_default_graph().as_graph_element(

--> 300 fetch, allow_tensor=True, allow_operation=True))

301 except TypeError as e:

~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation)

3477 with self._lock:

-> 3478 return self._as_graph_element_locked(obj, allow_tensor, allow_operation)

3479

~\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)

3566 raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__,

-> 3567 types_str))

3568

TypeError: Can not convert a TensorShapeV1 into a Tensor or Operation.

During handling of the above exception, another exception occurred:

TypeError Traceback (most recent call last)

<ipython-input-24-de007c69e003> in <module>

----> 1 sess.run(x.get_shape())

~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)

927 try:

928 result = self._run(None, fetches, feed_dict, options_ptr,

--> 929 run_metadata_ptr)

930 if run_metadata:

931 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)

1135 # Create a fetch handler to take care of the structure of fetches.

1136 fetch_handler = _FetchHandler(

-> 1137 self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)

1138

1139 # Run request and get response.

~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)

469 """

470 with graph.as_default():

--> 471 self._fetch_mapper = _FetchMapper.for_fetch(fetches)

472 self._fetches = []

473 self._targets = []

~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)

269 if isinstance(fetch, tensor_type):

270 fetches, contraction_fn = fetch_fn(fetch)

--> 271 return _ElementFetchMapper(fetches, contraction_fn)

272 # Did not find anything.

273 raise TypeError('Fetch argument %r has invalid type %r' % (fetch,

~\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)

302 raise TypeError('Fetch argument %r has invalid type %r, '

303 'must be a string or Tensor. (%s)' %

--> 304 (fetch, type(fetch), str(e)))

305 except ValueError as e:

306 raise ValueError('Fetch argument %r cannot be interpreted as a '

TypeError: Fetch argument TensorShape([Dimension(10), Dimension(10), Dimension(10)]) has invalid type <class 'tensorflow.python.framework.tensor_shape.TensorShapeV1'>, must be a string or Tensor. (Can not convert a TensorShapeV1 into a Tensor or Operation.)

我们可以使用tf.rank()来确定张量的秩。tf.rank()会返回一个代表张量秩的张量,可直接在计算图中使用。

In [25]: tf.rank(x)

Out[25]: <tf.Tensor 'Rank:0' shape=() dtype=int32>

In [26]: sess.run(tf.rank(x))

Out[26]: 3

补充知识:tensorflow循环改变tensor的值

使用tf.concat()实现4维tensor的循环赋值

alist=[[[[1,1,1],[2,2,2],[3,3,3]],[[4,4,4],[5,5,5],[6,6,6]]],[[[7,7,7],[8,8,8],[9,9,9]],[[10,10,10],[11,11,11],[12,12,12]]]] #2,2,3,3-n,c,h,w

kenel=(np.asarray(alist)*2).tolist()

print(kenel)

inputs=tf.constant(alist,dtype=tf.float32)

kenel=tf.constant(kenel,dtype=tf.float32)

inputs=tf.transpose(inputs,[0,2,3,1]) #n,h,w,c

kenel=tf.transpose(kenel,[0,2,3,1]) #n,h,w,c

uints=inputs.get_shape()

h=int(uints[1])

w=int(uints[2])

encoder_output=[]

for b in range(int(uints[0])):

encoder_output_c=[]

for c in range(int(uints[-1])):

one_channel_in = inputs[b, :, :, c]

one_channel_in = tf.reshape(one_channel_in, [1, h, w, 1])

one_channel_kernel = kenel[b, :, :, c]

one_channel_kernel = tf.reshape(one_channel_kernel, [h, w, 1, 1])

encoder_output_cc = tf.nn.conv2d(input=one_channel_in, filter=one_channel_kernel, strides=[1, 1, 1, 1], padding="SAME")

if c==0:

encoder_output_c=encoder_output_cc

else:

encoder_output_c=tf.concat([encoder_output_c,encoder_output_cc],axis=3)

if b==0:

encoder_output=encoder_output_c

else:

encoder_output = tf.concat([encoder_output, encoder_output_c], axis=0)

with tf.Session() as sess:

print(sess.run(tf.transpose(encoder_output,[0,3,1,2])))

print(encoder_output.get_shape())

输出:

[[[[ 32. 48. 32.]

[ 56. 84. 56.]

[ 32. 48. 32.]]

[[ 200. 300. 200.]

[ 308. 462. 308.]

[ 200. 300. 200.]]]

[[[ 512. 768. 512.]

[ 776. 1164. 776.]

[ 512. 768. 512.]]

[[ 968. 1452. 968.]

[1460. 2190. 1460.]

[ 968. 1452. 968.]]]]

(2, 3, 3, 2)

以上这篇TensorFlow中如何确定张量的形状实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 TensorFlow中如何确定张量的形状实例 的全部内容, 来源链接: utcz.com/z/347790.html

回到顶部