Python Pandas - 将嵌套字典转换为多索引数据帧
首先,让我们创建一个嵌套字典 -
dictNested = {'Cricket': {'Boards': ['BCCI', 'CA', 'ECB'],'Country': ['India', 'Australia', 'England']},'Football': {'Boards': ['TFA', 'TCSA', 'GFA'],'Country': ['England', 'Canada', 'Germany']}}
现在,创建一个空字典 -
new_dict = {}
现在,循环分配值 -
for outerKey, innerDict in dictNested.items():for innerKey, values in innerDict.items():
new_dict[(outerKey, innerKey)] = values
转换为多索引数据帧 -
pd.DataFrame(new_dict)
示例
以下是代码 -
import pandas as pd输出结果# 创建嵌套字典
dictNested = {'Cricket': {'Boards': ['BCCI', 'CA', 'ECB'],'Country': ['India', 'Australia', 'England']},'Football': {'Boards': ['TFA', 'TCSA', 'GFA'],'Country': ['England', 'Canada', 'Germany']
}}
print"\nNested Dictionary...\n",dictNested
new_dict = {}
for outerKey, innerDict in dictNested.items():
for innerKey, values in innerDict.items():
new_dict[(outerKey, innerKey)] = values
# 转换为多索引数据帧
print"\nMulti-index DataFrame...\n",pd.DataFrame(new_dict)
这将产生以下输出 -
Nested Dictionary...{'Cricket': {'Country': ['India', 'Australia', 'England'], 'Boards': ['BCCI', 'CA', 'ECB']}, 'Football': {'Country': ['England', 'Canada', 'Germany'], 'Boards': ['TFA', 'TCSA', 'GFA']}}
Multi-index DataFrame...
Cricket Football
Boards Country Boards Country
0 BCCI India TFA England
1 CA Australia TCSA Canada
2 ECB England GFA Germany
以上是 Python Pandas - 将嵌套字典转换为多索引数据帧 的全部内容, 来源链接: utcz.com/z/347517.html