TensorFlow实现Logistic回归

本文实例为大家分享了TensorFlow实现Logistic回归的具体代码,供大家参考,具体内容如下

1.导入模块

import numpy as np

import pandas as pd

from pandas import Series,DataFrame

from matplotlib import pyplot as plt

%matplotlib inline

#导入tensorflow

import tensorflow as tf

#导入MNIST(手写数字数据集)

from tensorflow.examples.tutorials.mnist import input_data

2.获取训练数据和测试数据

import ssl

ssl._create_default_https_context = ssl._create_unverified_context

mnist = input_data.read_data_sets('./TensorFlow',one_hot=True)

test = mnist.test

test_images = test.images

train = mnist.train

images = train.images

3.模拟线性方程

#创建占矩阵位符X,Y

X = tf.placeholder(tf.float32,shape=[None,784])

Y = tf.placeholder(tf.float32,shape=[None,10])

#随机生成斜率W和截距b

W = tf.Variable(tf.zeros([784,10]))

b = tf.Variable(tf.zeros([10]))

#根据模拟线性方程得出预测值

y_pre = tf.matmul(X,W)+b

#将预测值结果概率化

y_pre_r = tf.nn.softmax(y_pre)

4.构造损失函数

# -y*tf.log(y_pre_r) --->-Pi*log(Pi) 信息熵公式

cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(y_pre_r),axis=1))

5.实现梯度下降,获取最小损失函数

#learning_rate:学习率,是进行训练时在最陡的梯度方向上所采取的「步」长;

learning_rate = 0.01

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

6.TensorFlow初始化,并进行训练

#定义相关参数

#训练循环次数

training_epochs = 25

#batch 一批,每次训练给算法10个数据

batch_size = 10

#每隔5次,打印输出运算的结果

display_step = 5

#预定义初始化

init = tf.global_variables_initializer()

#开始训练

with tf.Session() as sess:

#初始化

sess.run(init)

#循环训练次数

for epoch in range(training_epochs):

avg_cost = 0.

#总训练批次total_batch =训练总样本量/每批次样本数量

total_batch = int(train.num_examples/batch_size)

for i in range(total_batch):

#每次取出100个数据作为训练数据

batch_xs,batch_ys = mnist.train.next_batch(batch_size)

_, c = sess.run([optimizer,cost],feed_dict={X:batch_xs,Y:batch_ys})

avg_cost +=c/total_batch

if(epoch+1)%display_step == 0:

print(batch_xs.shape,batch_ys.shape)

print('epoch:','%04d'%(epoch+1),'cost=','{:.9f}'.format(avg_cost))

print('Optimization Finished!')

#7.评估效果

# Test model

correct_prediction = tf.equal(tf.argmax(y_pre_r,1),tf.argmax(Y,1))

# Calculate accuracy for 3000 examples

# tf.cast类型转换

accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

print("Accuracy:",accuracy.eval({X: mnist.test.images[:3000], Y: mnist.test.labels[:3000]}))

以上是 TensorFlow实现Logistic回归 的全部内容, 来源链接: utcz.com/z/339669.html

回到顶部