Pytorch 实现自定义参数层的例子

注意,一般官方接口都带有可导功能,如果你实现的层不具有可导功能,就需要自己实现梯度的反向传递。

官方Linear层:

class Linear(Module):

def __init__(self, in_features, out_features, bias=True):

super(Linear, self).__init__()

self.in_features = in_features

self.out_features = out_features

self.weight = Parameter(torch.Tensor(out_features, in_features))

if bias:

self.bias = Parameter(torch.Tensor(out_features))

else:

self.register_parameter('bias', None)

self.reset_parameters()

def reset_parameters(self):

stdv = 1. / math.sqrt(self.weight.size(1))

self.weight.data.uniform_(-stdv, stdv)

if self.bias is not None:

self.bias.data.uniform_(-stdv, stdv)

def forward(self, input):

return F.linear(input, self.weight, self.bias)

def extra_repr(self):

return 'in_features={}, out_features={}, bias={}'.format(

self.in_features, self.out_features, self.bias is not None

)

实现view层

class Reshape(nn.Module):

def __init__(self, *args):

super(Reshape, self).__init__()

self.shape = args

def forward(self, x):

return x.view((x.size(0),)+self.shape)

实现LinearWise层

class LinearWise(nn.Module):

def __init__(self, in_features, bias=True):

super(LinearWise, self).__init__()

self.in_features = in_features

self.weight = nn.Parameter(torch.Tensor(self.in_features))

if bias:

self.bias = nn.Parameter(torch.Tensor(self.in_features))

else:

self.register_parameter('bias', None)

self.reset_parameters()

def reset_parameters(self):

stdv = 1. / math.sqrt(self.weight.size(0))

self.weight.data.uniform_(-stdv, stdv)

if self.bias is not None:

self.bias.data.uniform_(-stdv, stdv)

def forward(self, input):

x = input * self.weight

if self.bias is not None:

x = x + self.bias

return x

以上这篇Pytorch 实现自定义参数层的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Pytorch 实现自定义参数层的例子 的全部内容, 来源链接: utcz.com/z/339349.html

回到顶部