自适应线性神经网络Adaline的python实现详解

自适应线性神经网络Adaptive linear network, 是神经网络的入门级别网络。

相对于感知器,采用了f(z)=z的激活函数,属于连续函数。

代价函数为LMS函数,最小均方算法,Least mean square。

实现上,采用随机梯度下降,由于更新的随机性,运行多次结果是不同的。

'''

Adaline classifier

created on 2019.9.14

author: vince

'''

import pandas

import math

import numpy

import logging

import random

import matplotlib.pyplot as plt

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score

'''

Adaline classifier

Attributes

w: ld-array = weights after training

l: list = number of misclassification during each iteration

'''

class Adaline:

def __init__(self, eta = 0.001, iter_num = 500, batch_size = 1):

'''

eta: float = learning rate (between 0.0 and 1.0).

iter_num: int = iteration over the training dataset.

batch_size: int = gradient descent batch number,

if batch_size == 1, used SGD;

if batch_size == 0, use BGD;

else MBGD;

'''

self.eta = eta;

self.iter_num = iter_num;

self.batch_size = batch_size;

def train(self, X, Y):

'''

train training data.

X:{array-like}, shape=[n_samples, n_features] = Training vectors,

where n_samples is the number of training samples and

n_features is the number of features.

Y:{array-like}, share=[n_samples] = traget values.

'''

self.w = numpy.zeros(1 + X.shape[1]);

self.l = numpy.zeros(self.iter_num);

for iter_index in range(self.iter_num):

for rand_time in range(X.shape[0]):

sample_index = random.randint(0, X.shape[0] - 1);

if (self.activation(X[sample_index]) == Y[sample_index]):

continue;

output = self.net_input(X[sample_index]);

errors = Y[sample_index] - output;

self.w[0] += self.eta * errors;

self.w[1:] += self.eta * numpy.dot(errors, X[sample_index]);

break;

for sample_index in range(X.shape[0]):

self.l[iter_index] += (Y[sample_index] - self.net_input(X[sample_index])) ** 2 * 0.5;

logging.info("iter %s: w0(%s), w1(%s), w2(%s), l(%s)" %

(iter_index, self.w[0], self.w[1], self.w[2], self.l[iter_index]));

if iter_index > 1 and math.fabs(self.l[iter_index - 1] - self.l[iter_index]) < 0.0001:

break;

def activation(self, x):

return numpy.where(self.net_input(x) >= 0.0 , 1 , -1);

def net_input(self, x):

return numpy.dot(x, self.w[1:]) + self.w[0];

def predict(self, x):

return self.activation(x);

def main():

logging.basicConfig(level = logging.INFO,

format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',

datefmt = '%a, %d %b %Y %H:%M:%S');

iris = load_iris();

features = iris.data[:99, [0, 2]];

# normalization

features_std = numpy.copy(features);

for i in range(features.shape[1]):

features_std[:, i] = (features_std[:, i] - features[:, i].mean()) / features[:, i].std();

labels = numpy.where(iris.target[:99] == 0, -1, 1);

# 2/3 data from training, 1/3 data for testing

train_features, test_features, train_labels, test_labels = train_test_split(

features_std, labels, test_size = 0.33, random_state = 23323);

logging.info("train set shape:%s" % (str(train_features.shape)));

classifier = Adaline();

classifier.train(train_features, train_labels);

test_predict = numpy.array([]);

for feature in test_features:

predict_label = classifier.predict(feature);

test_predict = numpy.append(test_predict, predict_label);

score = accuracy_score(test_labels, test_predict);

logging.info("The accruacy score is: %s "% (str(score)));

#plot

x_min, x_max = train_features[:, 0].min() - 1, train_features[:, 0].max() + 1;

y_min, y_max = train_features[:, 1].min() - 1, train_features[:, 1].max() + 1;

plt.xlim(x_min, x_max);

plt.ylim(y_min, y_max);

plt.xlabel("width");

plt.ylabel("heigt");

plt.scatter(train_features[:, 0], train_features[:, 1], c = train_labels, marker = 'o', s = 10);

k = - classifier.w[1] / classifier.w[2];

d = - classifier.w[0] / classifier.w[2];

plt.plot([x_min, x_max], [k * x_min + d, k * x_max + d], "go-");

plt.show();

if __name__ == "__main__":

main();

以上是 自适应线性神经网络Adaline的python实现详解 的全部内容, 来源链接: utcz.com/z/339316.html

回到顶部