tensorflow使用神经网络实现mnist分类

本文实例为大家分享了tensorflow神经网络实现mnist分类的具体代码,供大家参考,具体内容如下

只有两层的神经网络,直接上代码

#引入包

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

#引入input_data文件

from tensorflow.examples.tutorials.mnist import input_data

#读取文件

mnist = input_data.read_data_sets('F:/mnist/data/',one_hot=True)

#定义第一个隐藏层和第二个隐藏层,输入层输出层

n_hidden_1 = 256

n_hidden_2 = 128

n_input = 784

n_classes = 10

#由于不知道输入图片个数,所以用placeholder

x = tf.placeholder("float",[None,n_input])

y = tf.placeholder("float",[None,n_classes])

stddev = 0.1

#定义权重

weights = {

'w1':tf.Variable(tf.random_normal([n_input,n_hidden_1],stddev = stddev)),

'w2':tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2],stddev=stddev)),

'out':tf.Variable(tf.random_normal([n_hidden_2,n_classes],stddev=stddev))

}

#定义偏置

biases = {

'b1':tf.Variable(tf.random_normal([n_hidden_1])),

'b2':tf.Variable(tf.random_normal([n_hidden_2])),

'out':tf.Variable(tf.random_normal([n_classes])),

}

print("Network is Ready")

#前向传播

def multilayer_perceptrin(_X,_weights,_biases):

layer1 = tf.nn.sigmoid(tf.add(tf.matmul(_X,_weights['w1']),_biases['b1']))

layer2 = tf.nn.sigmoid(tf.add(tf.matmul(layer1,_weights['w2']),_biases['b2']))

return (tf.matmul(layer2,_weights['out'])+_biases['out'])

#定义优化函数,精准度等

pred = multilayer_perceptrin(x,weights,biases)

cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = pred,labels=y))

optm = tf.train.GradientDescentOptimizer(learning_rate = 0.001).minimize(cost)

corr = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))

accr = tf.reduce_mean(tf.cast(corr,"float"))

print("Functions is ready")

#定义超参数

training_epochs = 80

batch_size = 200

display_step = 4

#会话开始

init = tf.global_variables_initializer()

sess = tf.Session()

sess.run(init)

#优化

for epoch in range(training_epochs):

avg_cost=0.

total_batch = int(mnist.train.num_examples/batch_size)

for i in range(total_batch):

batch_xs,batch_ys = mnist.train.next_batch(batch_size)

feeds = {x:batch_xs,y:batch_ys}

sess.run(optm,feed_dict = feeds)

avg_cost += sess.run(cost,feed_dict=feeds)

avg_cost = avg_cost/total_batch

if (epoch+1) % display_step ==0:

print("Epoch:%03d/%03d cost:%.9f"%(epoch,training_epochs,avg_cost))

feeds = {x:batch_xs,y:batch_ys}

train_acc = sess.run(accr,feed_dict = feeds)

print("Train accuracy:%.3f"%(train_acc))

feeds = {x:mnist.test.images,y:mnist.test.labels}

test_acc = sess.run(accr,feed_dict = feeds)

print("Test accuracy:%.3f"%(test_acc))

print("Optimization Finished")

程序部分运行结果如下:

Train accuracy:0.605

Test accuracy:0.633

Epoch:071/080 cost:1.810029302

Train accuracy:0.600

Test accuracy:0.645

Epoch:075/080 cost:1.761531130

Train accuracy:0.690

Test accuracy:0.649

Epoch:079/080 cost:1.711757494

Train accuracy:0.640

Test accuracy:0.660

Optimization Finished

以上是 tensorflow使用神经网络实现mnist分类 的全部内容, 来源链接: utcz.com/z/336248.html

回到顶部