Numpy实现卷积神经网络(CNN)的示例

import numpy as np

import sys

def conv_(img, conv_filter):

filter_size = conv_filter.shape[1]

result = np.zeros((img.shape))

# 循环遍历图像以应用卷积运算

for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)):

for c in np.uint16(np.arange(filter_size/2.0, img.shape[1]-filter_size/2.0+1)):

# 卷积的区域

curr_region = img[r-np.uint16(np.floor(filter_size/2.0)):r+np.uint16(np.ceil(filter_size/2.0)),

c-np.uint16(np.floor(filter_size/2.0)):c+np.uint16(np.ceil(filter_size/2.0))]

# 卷积操作

curr_result = curr_region * conv_filter

conv_sum = np.sum(curr_result)

# 将求和保存到特征图中

result[r, c] = conv_sum

# 裁剪结果矩阵的异常值

final_result = result[np.uint16(filter_size/2.0):result.shape[0]-np.uint16(filter_size/2.0),

np.uint16(filter_size/2.0):result.shape[1]-np.uint16(filter_size/2.0)]

return final_result

def conv(img, conv_filter):

# 检查图像通道的数量是否与过滤器深度匹配

if len(img.shape) > 2 or len(conv_filter.shape) > 3:

if img.shape[-1] != conv_filter.shape[-1]:

print("错误:图像和过滤器中的通道数必须匹配")

sys.exit()

# 检查过滤器是否是方阵

if conv_filter.shape[1] != conv_filter.shape[2]:

print('错误:过滤器必须是方阵')

sys.exit()

# 检查过滤器大小是否是奇数

if conv_filter.shape[1] % 2 == 0:

print('错误:过滤器大小必须是奇数')

sys.exit()

# 定义一个空的特征图,用于保存过滤器与图像的卷积输出

feature_maps = np.zeros((img.shape[0] - conv_filter.shape[1] + 1,

img.shape[1] - conv_filter.shape[1] + 1,

conv_filter.shape[0]))

# 卷积操作

for filter_num in range(conv_filter.shape[0]):

print("Filter ", filter_num + 1)

curr_filter = conv_filter[filter_num, :]

# 检查单个过滤器是否有多个通道。如果有,那么每个通道将对图像进行卷积。所有卷积的结果加起来得到一个特征图。

if len(curr_filter.shape) > 2:

conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0])

for ch_num in range(1, curr_filter.shape[-1]):

conv_map = conv_map + conv_(img[:, :, ch_num], curr_filter[:, :, ch_num])

else:

conv_map = conv_(img, curr_filter)

feature_maps[:, :, filter_num] = conv_map

return feature_maps

def pooling(feature_map, size=2, stride=2):

# 定义池化操作的输出

pool_out = np.zeros((np.uint16((feature_map.shape[0] - size + 1) / stride + 1),

np.uint16((feature_map.shape[1] - size + 1) / stride + 1),

feature_map.shape[-1]))

for map_num in range(feature_map.shape[-1]):

r2 = 0

for r in np.arange(0, feature_map.shape[0] - size + 1, stride):

c2 = 0

for c in np.arange(0, feature_map.shape[1] - size + 1, stride):

pool_out[r2, c2, map_num] = np.max([feature_map[r: r+size, c: c+size, map_num]])

c2 = c2 + 1

r2 = r2 + 1

return pool_out

import skimage.data

import numpy

import matplotlib

import matplotlib.pyplot as plt

import NumPyCNN as numpycnn

# 读取图像

img = skimage.data.chelsea()

# 转成灰度图像

img = skimage.color.rgb2gray(img)

# 初始化卷积核

l1_filter = numpy.zeros((2, 3, 3))

# 检测垂直边缘

l1_filter[0, :, :] = numpy.array([[[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]])

# 检测水平边缘

l1_filter[1, :, :] = numpy.array([[[1, 1, 1], [0, 0, 0], [-1, -1, -1]]])

"""

第一个卷积层

"""

# 卷积操作

l1_feature_map = numpycnn.conv(img, l1_filter)

# ReLU

l1_feature_map_relu = numpycnn.relu(l1_feature_map)

# Pooling

l1_feature_map_relu_pool = numpycnn.pooling(l1_feature_map_relu, 2, 2)

"""

第二个卷积层

"""

# 初始化卷积核

l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])

# 卷积操作

l2_feature_map = numpycnn.conv(l1_feature_map_relu_pool, l2_filter)

# ReLU

l2_feature_map_relu = numpycnn.relu(l2_feature_map)

# Pooling

l2_feature_map_relu_pool = numpycnn.pooling(l2_feature_map_relu, 2, 2)

"""

第三个卷积层

"""

# 初始化卷积核

l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])

# 卷积操作

l3_feature_map = numpycnn.conv(l2_feature_map_relu_pool, l3_filter)

# ReLU

l3_feature_map_relu = numpycnn.relu(l3_feature_map)

# Pooling

l3_feature_map_relu_pool = numpycnn.pooling(l3_feature_map_relu, 2, 2)

"""

结果可视化

"""

fig0, ax0 = plt.subplots(nrows=1, ncols=1)

ax0.imshow(img).set_cmap("gray")

ax0.set_title("Input Image")

ax0.get_xaxis().set_ticks([])

ax0.get_yaxis().set_ticks([])

plt.savefig("in_img1.png", bbox_inches="tight")

plt.close(fig0)

# 第一层

fig1, ax1 = plt.subplots(nrows=3, ncols=2)

ax1[0, 0].imshow(l1_feature_map[:, :, 0]).set_cmap("gray")

ax1[0, 0].get_xaxis().set_ticks([])

ax1[0, 0].get_yaxis().set_ticks([])

ax1[0, 0].set_title("L1-Map1")

ax1[0, 1].imshow(l1_feature_map[:, :, 1]).set_cmap("gray")

ax1[0, 1].get_xaxis().set_ticks([])

ax1[0, 1].get_yaxis().set_ticks([])

ax1[0, 1].set_title("L1-Map2")

ax1[1, 0].imshow(l1_feature_map_relu[:, :, 0]).set_cmap("gray")

ax1[1, 0].get_xaxis().set_ticks([])

ax1[1, 0].get_yaxis().set_ticks([])

ax1[1, 0].set_title("L1-Map1ReLU")

ax1[1, 1].imshow(l1_feature_map_relu[:, :, 1]).set_cmap("gray")

ax1[1, 1].get_xaxis().set_ticks([])

ax1[1, 1].get_yaxis().set_ticks([])

ax1[1, 1].set_title("L1-Map2ReLU")

ax1[2, 0].imshow(l1_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax1[2, 0].get_xaxis().set_ticks([])

ax1[2, 0].get_yaxis().set_ticks([])

ax1[2, 0].set_title("L1-Map1ReLUPool")

ax1[2, 1].imshow(l1_feature_map_relu_pool[:, :, 1]).set_cmap("gray")

ax1[2, 0].get_xaxis().set_ticks([])

ax1[2, 0].get_yaxis().set_ticks([])

ax1[2, 1].set_title("L1-Map2ReLUPool")

plt.savefig("L1.png", bbox_inches="tight")

plt.close(fig1)

# 第二层

fig2, ax2 = plt.subplots(nrows=3, ncols=3)

ax2[0, 0].imshow(l2_feature_map[:, :, 0]).set_cmap("gray")

ax2[0, 0].get_xaxis().set_ticks([])

ax2[0, 0].get_yaxis().set_ticks([])

ax2[0, 0].set_title("L2-Map1")

ax2[0, 1].imshow(l2_feature_map[:, :, 1]).set_cmap("gray")

ax2[0, 1].get_xaxis().set_ticks([])

ax2[0, 1].get_yaxis().set_ticks([])

ax2[0, 1].set_title("L2-Map2")

ax2[0, 2].imshow(l2_feature_map[:, :, 2]).set_cmap("gray")

ax2[0, 2].get_xaxis().set_ticks([])

ax2[0, 2].get_yaxis().set_ticks([])

ax2[0, 2].set_title("L2-Map3")

ax2[1, 0].imshow(l2_feature_map_relu[:, :, 0]).set_cmap("gray")

ax2[1, 0].get_xaxis().set_ticks([])

ax2[1, 0].get_yaxis().set_ticks([])

ax2[1, 0].set_title("L2-Map1ReLU")

ax2[1, 1].imshow(l2_feature_map_relu[:, :, 1]).set_cmap("gray")

ax2[1, 1].get_xaxis().set_ticks([])

ax2[1, 1].get_yaxis().set_ticks([])

ax2[1, 1].set_title("L2-Map2ReLU")

ax2[1, 2].imshow(l2_feature_map_relu[:, :, 2]).set_cmap("gray")

ax2[1, 2].get_xaxis().set_ticks([])

ax2[1, 2].get_yaxis().set_ticks([])

ax2[1, 2].set_title("L2-Map3ReLU")

ax2[2, 0].imshow(l2_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax2[2, 0].get_xaxis().set_ticks([])

ax2[2, 0].get_yaxis().set_ticks([])

ax2[2, 0].set_title("L2-Map1ReLUPool")

ax2[2, 1].imshow(l2_feature_map_relu_pool[:, :, 1]).set_cmap("gray")

ax2[2, 1].get_xaxis().set_ticks([])

ax2[2, 1].get_yaxis().set_ticks([])

ax2[2, 1].set_title("L2-Map2ReLUPool")

ax2[2, 2].imshow(l2_feature_map_relu_pool[:, :, 2]).set_cmap("gray")

ax2[2, 2].get_xaxis().set_ticks([])

ax2[2, 2].get_yaxis().set_ticks([])

ax2[2, 2].set_title("L2-Map3ReLUPool")

plt.savefig("L2.png", bbox_inches="tight")

plt.close(fig2)

# 第三层

fig3, ax3 = plt.subplots(nrows=1, ncols=3)

ax3[0].imshow(l3_feature_map[:, :, 0]).set_cmap("gray")

ax3[0].get_xaxis().set_ticks([])

ax3[0].get_yaxis().set_ticks([])

ax3[0].set_title("L3-Map1")

ax3[1].imshow(l3_feature_map_relu[:, :, 0]).set_cmap("gray")

ax3[1].get_xaxis().set_ticks([])

ax3[1].get_yaxis().set_ticks([])

ax3[1].set_title("L3-Map1ReLU")

ax3[2].imshow(l3_feature_map_relu_pool[:, :, 0]).set_cmap("gray")

ax3[2].get_xaxis().set_ticks([])

ax3[2].get_yaxis().set_ticks([])

ax3[2].set_title("L3-Map1ReLUPool")

plt.savefig("L3.png", bbox_inches="tight")

plt.close(fig3)

以上是 Numpy实现卷积神经网络(CNN)的示例 的全部内容, 来源链接: utcz.com/z/335825.html

回到顶部