Tensorflow之构建自己的图片数据集TFrecords的方法

学习谷歌的深度学习终于有点眉目了,给大家分享我的Tensorflow学习历程。

tensorflow的官方中文文档比较生涩,数据集一直采用的MNIST二进制数据集。并没有过多讲述怎么构建自己的图片数据集tfrecords。

流程是:制作数据集—读取数据集—-加入队列

先贴完整的代码:

#encoding=utf-8

import os

import tensorflow as tf

from PIL import Image

cwd = os.getcwd()

classes = {'test','test1','test2'}

#制作二进制数据

def create_record():

writer = tf.python_io.TFRecordWriter("train.tfrecords")

for index, name in enumerate(classes):

class_path = cwd +"/"+ name+"/"

for img_name in os.listdir(class_path):

img_path = class_path + img_name

img = Image.open(img_path)

img = img.resize((64, 64))

img_raw = img.tobytes() #将图片转化为原生bytes

print index,img_raw

example = tf.train.Example(

features=tf.train.Features(feature={

"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),

'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))

}))

writer.write(example.SerializeToString())

writer.close()

data = create_record()

#读取二进制数据

def read_and_decode(filename):

# 创建文件队列,不限读取的数量

filename_queue = tf.train.string_input_producer([filename])

# create a reader from file queue

reader = tf.TFRecordReader()

# reader从文件队列中读入一个序列化的样本

_, serialized_example = reader.read(filename_queue)

# get feature from serialized example

# 解析符号化的样本

features = tf.parse_single_example(

serialized_example,

features={

'label': tf.FixedLenFeature([], tf.int64),

'img_raw': tf.FixedLenFeature([], tf.string)

}

)

label = features['label']

img = features['img_raw']

img = tf.decode_raw(img, tf.uint8)

img = tf.reshape(img, [64, 64, 3])

img = tf.cast(img, tf.float32) * (1. / 255) - 0.5

label = tf.cast(label, tf.int32)

return img, label

if __name__ == '__main__':

if 0:

data = create_record("train.tfrecords")

else:

img, label = read_and_decode("train.tfrecords")

print "tengxing",img,label

#使用shuffle_batch可以随机打乱输入 next_batch挨着往下取

# shuffle_batch才能实现[img,label]的同步,也即特征和label的同步,不然可能输入的特征和label不匹配

# 比如只有这样使用,才能使img和label一一对应,每次提取一个image和对应的label

# shuffle_batch返回的值就是RandomShuffleQueue.dequeue_many()的结果

# Shuffle_batch构建了一个RandomShuffleQueue,并不断地把单个的[img,label],送入队列中

img_batch, label_batch = tf.train.shuffle_batch([img, label],

batch_size=4, capacity=2000,

min_after_dequeue=1000)

# 初始化所有的op

init = tf.initialize_all_variables()

with tf.Session() as sess:

sess.run(init)

# 启动队列

threads = tf.train.start_queue_runners(sess=sess)

for i in range(5):

print img_batch.shape,label_batch

val, l = sess.run([img_batch, label_batch])

# l = to_categorical(l, 12)

print(val.shape, l)

制作数据集

#制作二进制数据

def create_record():

cwd = os.getcwd()

classes = {'1','2','3'}

writer = tf.python_io.TFRecordWriter("train.tfrecords")

for index, name in enumerate(classes):

class_path = cwd +"/"+ name+"/"

for img_name in os.listdir(class_path):

img_path = class_path + img_name

img = Image.open(img_path)

img = img.resize((28, 28))

img_raw = img.tobytes() #将图片转化为原生bytes

#print index,img_raw

example = tf.train.Example(

features=tf.train.Features(

feature={

"label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),

'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))

}

)

)

writer.write(example.SerializeToString())

writer.close()

TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter 写入到TFRecords文件。

读取数据集

#读取二进制数据

def read_and_decode(filename):

# 创建文件队列,不限读取的数量

filename_queue = tf.train.string_input_producer([filename])

# create a reader from file queue

reader = tf.TFRecordReader()

# reader从文件队列中读入一个序列化的样本

_, serialized_example = reader.read(filename_queue)

# get feature from serialized example

# 解析符号化的样本

features = tf.parse_single_example(

serialized_example,

features={

'label': tf.FixedLenFeature([], tf.int64),

'img_raw': tf.FixedLenFeature([], tf.string)

}

)

label = features['label']

img = features['img_raw']

img = tf.decode_raw(img, tf.uint8)

img = tf.reshape(img, [64, 64, 3])

img = tf.cast(img, tf.float32) * (1. / 255) - 0.5

label = tf.cast(label, tf.int32)

return img, label

一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List

加入队列

with tf.Session() as sess:

sess.run(init)

# 启动队列

threads = tf.train.start_queue_runners(sess=sess)

for i in range(5):

print img_batch.shape,label_batch

val, l = sess.run([img_batch, label_batch])

# l = to_categorical(l, 12)

print(val.shape, l)

这样就可以的到和tensorflow官方的二进制数据集了,

注意:

  1. 启动队列那条code不要忘记,不然卡死
  2. 使用的时候记得使用val和l,不然会报类型错误:TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, or numpy ndarrays.
  3. 算交叉熵时候:cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits,labels)算交叉熵
  4. 最后评估的时候用tf.nn.in_top_k(logits,labels,1)选logits最大的数的索引和label比较
  5. cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))算交叉熵,所以label必须转成one-hot向量

实例2:将图片文件夹下的图片转存tfrecords的数据集。

############################################################################################

#!/usr/bin/python2.7

# -*- coding: utf-8 -*-

#Author : zhaoqinghui

#Date : 2016.5.10

#Function: image convert to tfrecords

#############################################################################################

import tensorflow as tf

import numpy as np

import cv2

import os

import os.path

from PIL import Image

#参数设置

###############################################################################################

train_file = 'train.txt' #训练图片

name='train' #生成train.tfrecords

output_directory='./tfrecords'

resize_height=32 #存储图片高度

resize_width=32 #存储图片宽度

###############################################################################################

def _int64_feature(value):

return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):

return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def load_file(examples_list_file):

lines = np.genfromtxt(examples_list_file, delimiter=" ", dtype=[('col1', 'S120'), ('col2', 'i8')])

examples = []

labels = []

for example, label in lines:

examples.append(example)

labels.append(label)

return np.asarray(examples), np.asarray(labels), len(lines)

def extract_image(filename, resize_height, resize_width):

image = cv2.imread(filename)

image = cv2.resize(image, (resize_height, resize_width))

b,g,r = cv2.split(image)

rgb_image = cv2.merge([r,g,b])

return rgb_image

def transform2tfrecord(train_file, name, output_directory, resize_height, resize_width):

if not os.path.exists(output_directory) or os.path.isfile(output_directory):

os.makedirs(output_directory)

_examples, _labels, examples_num = load_file(train_file)

filename = output_directory + "/" + name + '.tfrecords'

writer = tf.python_io.TFRecordWriter(filename)

for i, [example, label] in enumerate(zip(_examples, _labels)):

print('No.%d' % (i))

image = extract_image(example, resize_height, resize_width)

print('shape: %d, %d, %d, label: %d' % (image.shape[0], image.shape[1], image.shape[2], label))

image_raw = image.tostring()

example = tf.train.Example(features=tf.train.Features(feature={

'image_raw': _bytes_feature(image_raw),

'height': _int64_feature(image.shape[0]),

'width': _int64_feature(image.shape[1]),

'depth': _int64_feature(image.shape[2]),

'label': _int64_feature(label)

}))

writer.write(example.SerializeToString())

writer.close()

def disp_tfrecords(tfrecord_list_file):

filename_queue = tf.train.string_input_producer([tfrecord_list_file])

reader = tf.TFRecordReader()

_, serialized_example = reader.read(filename_queue)

features = tf.parse_single_example(

serialized_example,

features={

'image_raw': tf.FixedLenFeature([], tf.string),

'height': tf.FixedLenFeature([], tf.int64),

'width': tf.FixedLenFeature([], tf.int64),

'depth': tf.FixedLenFeature([], tf.int64),

'label': tf.FixedLenFeature([], tf.int64)

}

)

image = tf.decode_raw(features['image_raw'], tf.uint8)

#print(repr(image))

height = features['height']

width = features['width']

depth = features['depth']

label = tf.cast(features['label'], tf.int32)

init_op = tf.initialize_all_variables()

resultImg=[]

resultLabel=[]

with tf.Session() as sess:

sess.run(init_op)

coord = tf.train.Coordinator()

threads = tf.train.start_queue_runners(sess=sess, coord=coord)

for i in range(21):

image_eval = image.eval()

resultLabel.append(label.eval())

image_eval_reshape = image_eval.reshape([height.eval(), width.eval(), depth.eval()])

resultImg.append(image_eval_reshape)

pilimg = Image.fromarray(np.asarray(image_eval_reshape))

pilimg.show()

coord.request_stop()

coord.join(threads)

sess.close()

return resultImg,resultLabel

def read_tfrecord(filename_queuetemp):

filename_queue = tf.train.string_input_producer([filename_queuetemp])

reader = tf.TFRecordReader()

_, serialized_example = reader.read(filename_queue)

features = tf.parse_single_example(

serialized_example,

features={

'image_raw': tf.FixedLenFeature([], tf.string),

'width': tf.FixedLenFeature([], tf.int64),

'depth': tf.FixedLenFeature([], tf.int64),

'label': tf.FixedLenFeature([], tf.int64)

}

)

image = tf.decode_raw(features['image_raw'], tf.uint8)

# image

tf.reshape(image, [256, 256, 3])

# normalize

image = tf.cast(image, tf.float32) * (1. /255) - 0.5

# label

label = tf.cast(features['label'], tf.int32)

return image, label

def test():

transform2tfrecord(train_file, name , output_directory, resize_height, resize_width) #转化函数

img,label=disp_tfrecords(output_directory+'/'+name+'.tfrecords') #显示函数

img,label=read_tfrecord(output_directory+'/'+name+'.tfrecords') #读取函数

print label

if __name__ == '__main__':

test()

这样就可以得到自己专属的数据集.tfrecords了  ,它可以直接用于tensorflow的数据集。

以上是 Tensorflow之构建自己的图片数据集TFrecords的方法 的全部内容, 来源链接: utcz.com/z/333288.html

回到顶部