python生成lmdb格式的文件实例

在crnn训练的时候需要用到lmdb格式的数据集,下面是python生成lmdb个是数据集的代码,注意一定要在linux系统下,否则会读入图像的时候出问题,可能遇到的问题都在代码里面注释了,看代码即可。

#-*- coding:utf-8 -*-

import os

import lmdb#先pip install这个模块哦

import cv2

import glob

import numpy as np

def checkImageIsValid(imageBin):

if imageBin is None:

return False

imageBuf = np.fromstring(imageBin, dtype=np.uint8)

img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)

if img is None:

return False

imgH, imgW = img.shape[0], img.shape[1]

if imgH * imgW == 0:

return False

return True

def writeCache(env, cache):

with env.begin(write=True) as txn:

for k, v in cache.iteritems():

txn.put(k, v)

def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):

"""

Create LMDB dataset for CRNN training.

# ARGS:

outputPath : LMDB output path

imagePathList : list of image path

labelList : list of corresponding groundtruth texts

lexiconList : (optional) list of lexicon lists

checkValid : if true, check the validity of every image

"""

# print (len(imagePathList) , len(labelList))

assert(len(imagePathList) == len(labelList))

nSamples = len(imagePathList)

print '...................'

env = lmdb.open(outputPath, map_size=8589934592)#1099511627776)所需要的磁盘空间的最小值,之前是1T,我改成了8g,否则会报磁盘空间不足,这个数字是字节

cache = {}

cnt = 1

for i in xrange(nSamples):

imagePath = imagePathList[i]

label = labelList[i]

if not os.path.exists(imagePath):

print('%s does not exist' % imagePath)

continue

with open(imagePath, 'r') as f:

imageBin = f.read()

if checkValid:

if not checkImageIsValid(imageBin):

print('%s is not a valid image' % imagePath)#注意一定要在linux下,否则f.read就不可用了,就会输出这个信息

continue

imageKey = 'image-%09d' % cnt

labelKey = 'label-%09d' % cnt

cache[imageKey] = imageBin

cache[labelKey] = label

if lexiconList:

lexiconKey = 'lexicon-%09d' % cnt

cache[lexiconKey] = ' '.join(lexiconList[i])

if cnt % 1000 == 0:

writeCache(env, cache)

cache = {}

print('Written %d / %d' % (cnt, nSamples))

cnt += 1

nSamples = cnt - 1

cache['num-samples'] = str(nSamples)

writeCache(env, cache)

print('Created dataset with %d samples' % nSamples)

def read_text(path):

with open(path) as f:

text = f.read()

text = text.strip()

return text

if __name__ == '__main__':

# lmdb 输出目录

outputPath = 'D:/ruanjianxiazai/tuxiangyangben/fengehou/train'#训练集和验证集要跑两遍这个程序,分两次生成

path = "D:/ruanjianxiazai/tuxiangyangben/fengehou/chenguang/*.jpg"#将txt与jpg的都放在同一个文件里面

imagePathList = glob.glob(path)

print '------------',len(imagePathList),'------------'

imgLabelLists = []

for p in imagePathList:

try:

imgLabelLists.append((p, read_text(p.replace('.jpg', '.txt'))))

except:

continue

# imgLabelList = [ (p, read_text(p.replace('.jpg', '.txt'))) for p in imagePathList]

# sort by labelList

imgLabelList = sorted(imgLabelLists, key = lambda x:len(x[1]))

imgPaths = [ p[0] for p in imgLabelList]

txtLists = [ p[1] for p in imgLabelList]

createDataset(outputPath, imgPaths, txtLists, lexiconList=None, checkValid=True)

以上这篇python生成lmdb格式的文件实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 python生成lmdb格式的文件实例 的全部内容, 来源链接: utcz.com/z/332976.html

回到顶部