keras模型保存为tensorflow的二进制模型方式

最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型。

折腾一下午,终于找到一个合适的方法,废话不多说,直接上代码:

# coding=utf-8

import sys

from keras.models import load_model

import tensorflow as tf

import os

import os.path as osp

from keras import backend as K

def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):

"""

Freezes the state of a session into a prunned computation graph.

Creates a new computation graph where variable nodes are replaced by

constants taking their current value in the session. The new graph will be

prunned so subgraphs that are not neccesary to compute the requested

outputs are removed.

@param session The TensorFlow session to be frozen.

@param keep_var_names A list of variable names that should not be frozen,

or None to freeze all the variables in the graph.

@param output_names Names of the relevant graph outputs.

@param clear_devices Remove the device directives from the graph for better portability.

@return The frozen graph definition.

"""

from tensorflow.python.framework.graph_util import convert_variables_to_constants

graph = session.graph

with graph.as_default():

freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))

output_names = output_names or []

output_names += [v.op.name for v in tf.global_variables()]

input_graph_def = graph.as_graph_def()

if clear_devices:

for node in input_graph_def.node:

node.device = ""

frozen_graph = convert_variables_to_constants(session, input_graph_def,

output_names, freeze_var_names)

return frozen_graph

input_fld = sys.path[0]

weight_file = 'your_model.h5'

output_graph_name = 'tensor_model.pb'

output_fld = input_fld + '/tensorflow_model/'

if not os.path.isdir(output_fld):

os.mkdir(output_fld)

weight_file_path = osp.join(input_fld, weight_file)

K.set_learning_phase(0)

net_model = load_model(weight_file_path)

print('input is :', net_model.input.name)

print ('output is:', net_model.output.name)

sess = K.get_session()

frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name])

from tensorflow.python.framework import graph_io

graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)

print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))

上面代码实现保存到当前目录的tensor_model目录下。

验证:

import tensorflow as tf

import numpy as np

import PIL.Image as Image

import cv2

def recognize(jpg_path, pb_file_path):

with tf.Graph().as_default():

output_graph_def = tf.GraphDef()

with open(pb_file_path, "rb") as f:

output_graph_def.ParseFromString(f.read())

tensors = tf.import_graph_def(output_graph_def, name="")

print tensors

with tf.Session() as sess:

init = tf.global_variables_initializer()

sess.run(init)

op = sess.graph.get_operations()

for m in op:

print(m.values())

input_x = sess.graph.get_tensor_by_name("convolution2d_1_input:0") #具体名称看上一段代码的input.name

print input_x

out_softmax = sess.graph.get_tensor_by_name("activation_4/Softmax:0") #具体名称看上一段代码的output.name

print out_softmax

img = cv2.imread(jpg_path, 0)

img_out_softmax = sess.run(out_softmax,

feed_dict={input_x: 1.0 - np.array(img).reshape((-1,28, 28, 1)) / 255.0})

print "img_out_softmax:", img_out_softmax

prediction_labels = np.argmax(img_out_softmax, axis=1)

print "label:", prediction_labels

pb_path = 'tensorflow_model/constant_graph_weights.pb'

img = 'test/6/8_48.jpg'

recognize(img, pb_path)

补充知识:如何将keras训练好的模型转换成tensorflow的.pb的文件并在TensorFlow serving环境调用

首先keras训练好的模型通过自带的model.save()保存下来是 .model (.h5) 格式的文件

模型载入是通过 my_model = keras . models . load_model( filepath )

要将该模型转换为.pb 格式的TensorFlow 模型,代码如下:

# -*- coding: utf-8 -*-

from keras.layers.core import Activation, Dense, Flatten

from keras.layers.embeddings import Embedding

from keras.layers.recurrent import LSTM

from keras.layers import Dropout

from keras.layers.wrappers import Bidirectional

from keras.models import Sequential,load_model

from keras.preprocessing import sequence

from sklearn.model_selection import train_test_split

import collections

from collections import defaultdict

import jieba

import numpy as np

import sys

reload(sys)

sys.setdefaultencoding('utf-8')

import tensorflow as tf

import os

import os.path as osp

from keras import backend as K

def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):

from tensorflow.python.framework.graph_util import convert_variables_to_constants

graph = session.graph

with graph.as_default():

freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))

output_names = output_names or []

output_names += [v.op.name for v in tf.global_variables()]

input_graph_def = graph.as_graph_def()

if clear_devices:

for node in input_graph_def.node:

node.device = ""

frozen_graph = convert_variables_to_constants(session, input_graph_def,

output_names, freeze_var_names)

return frozen_graph

input_fld = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/'

weight_file = 'biLSTM_brand_recognize.model'

output_graph_name = 'tensor_model_v3.pb'

output_fld = input_fld + '/tensorflow_model/'

if not os.path.isdir(output_fld):

os.mkdir(output_fld)

weight_file_path = osp.join(input_fld, weight_file)

K.set_learning_phase(0)

net_model = load_model(weight_file_path)

print('input is :', net_model.input.name)

print ('output is:', net_model.output.name)

sess = K.get_session()

frozen_graph = freeze_session(K.get_session(), output_names=[net_model.output.op.name])

from tensorflow.python.framework import graph_io

graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=True)

print('saved the constant graph (ready for inference) at: ', osp.join(output_fld, output_graph_name))

然后模型就存成了.pb格式的文件

问题就来了,这样存下来的.pb格式的文件是frozen model

如果通过TensorFlow serving 启用模型的话,会报错:

E tensorflow_serving/core/aspired_versions_manager.cc:358] Servable {name: mnist version: 1} cannot be loaded: Not found: Could not find meta graph def matching supplied tags: { serve }. To inspect available tag-sets in the SavedModel, please use the SavedModel CLI: `saved_model_cli`

因为TensorFlow serving 希望读取的是saved model

于是需要将frozen model 转化为 saved model 格式,解决方案如下:

from tensorflow.python.saved_model import signature_constants

from tensorflow.python.saved_model import tag_constants

export_dir = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/saved_model'

graph_pb = '/data/codebase/Keyword-fenci/brand_recogniton_biLSTM/tensorflow_model/tensor_model.pb'

builder = tf.saved_model.builder.SavedModelBuilder(export_dir)

with tf.gfile.GFile(graph_pb, "rb") as f:

graph_def = tf.GraphDef()

graph_def.ParseFromString(f.read())

sigs = {}

with tf.Session(graph=tf.Graph()) as sess:

# name="" is important to ensure we don't get spurious prefixing

tf.import_graph_def(graph_def, name="")

g = tf.get_default_graph()

inp = g.get_tensor_by_name(net_model.input.name)

out = g.get_tensor_by_name(net_model.output.name)

sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \

tf.saved_model.signature_def_utils.predict_signature_def(

{"in": inp}, {"out": out})

builder.add_meta_graph_and_variables(sess,

[tag_constants.SERVING],

signature_def_map=sigs)

builder.save()

于是保存下来的saved model 文件夹下就有两个文件:

saved_model.pb variables

其中variables 可以为空

于是将.pb 模型导入serving再读取,成功!

以上这篇keras模型保存为tensorflow的二进制模型方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 keras模型保存为tensorflow的二进制模型方式 的全部内容, 来源链接: utcz.com/z/332241.html

回到顶部