python实点云分割k-means(sklearn)详解

本文实例为大家分享了Python实点云分割k-means(sklearn),供大家参考,具体内容如下

植物叶片分割

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

from sklearn.cluster import KMeans

from sklearn.preprocessing import StandardScaler

from mpl_toolkits.mplot3d import Axes3D

data = pd.read_csv("jiaaobo1.txt",sep = " ")

data1 = data.iloc[:,0:3]

#标准化

transfer = StandardScaler()

data_new = transfer.fit_transform(data1)

data_new

#预估计流程

estimator = KMeans(n_clusters = 10)

estimator.fit(data_new)

y_pred = estimator.predict(data_new)

#也可以不预测

#cluster = KMeans(n_clusters = 9).fit(data_new)

#y_pred = cluster.labels_s

#质心

#centroid = cluster.cluster_centers_

#centroid.shape

fig = plt.figure()

ax = Axes3D(fig)

for i in range(9):

ax.scatter3D(data_new[y_pred == i,0],data_new[y_pred == i,1],data_new[y_pred == i,2],marker = ".")

ax.view_init(elev = 60,azim = 30)

ax.set_zlabel('Z')

ax.set_ylabel('Y')

ax.set_xlabel('X')

plt.show()

以上是 python实点云分割k-means(sklearn)详解 的全部内容, 来源链接: utcz.com/z/332233.html

回到顶部