Keras实现将两个模型连接到一起

神经网络玩得越久就越会尝试一些网络结构上的大改动。

先说意图

有两个模型:模型A和模型B。模型A的输出可以连接B的输入。将两个小模型连接成一个大模型,A-B,既可以同时训练又可以分离训练。

流行的算法里经常有这么关系的两个模型,对GAN来说,生成器和判别器就是这样子;对VAE来说,编码器和解码器就是这样子;对目标检测网络来说,backbone和整体也是可以拆分的。所以,应用范围还是挺广的。

实现方法

首先说明,我的实现方法不一定是最佳方法。也是实在没有借鉴到比较好的方法,所以才自己手动写了一个。

第一步,我们有现成的两个模型A和B;我们想把A的输出连到B的输入,组成一个整体C。

第二步, 重构新模型C;我的方法是:读出A和B各有哪些layer,然后一层一层重新搭成C。

可以看一个自编码器的代码(本人所编写):

class AE:

def __init__(self, dim, img_dim, batch_size):

self.dim = dim

self.img_dim = img_dim

self.batch_size = batch_size

self.encoder = self.encoder_construct()

self.decoder = self.decoder_construct()

def encoder_construct(self):

x_in = Input(shape=(self.img_dim, self.img_dim, 3))

x = x_in

x = Conv2D(self.dim // 16, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)

x = BatchNormalization()(x)

x = LeakyReLU(0.2)(x)

x = Conv2D(self.dim // 8, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)

x = BatchNormalization()(x)

x = LeakyReLU(0.2)(x)

x = Conv2D(self.dim // 4, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)

x = BatchNormalization()(x)

x = LeakyReLU(0.2)(x)

x = Conv2D(self.dim // 2, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)

x = BatchNormalization()(x)

x = LeakyReLU(0.2)(x)

x = Conv2D(self.dim, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(x)

x = BatchNormalization()(x)

x = LeakyReLU(0.2)(x)

x = GlobalAveragePooling2D()(x)

encoder = Model(x_in, x)

return encoder

def decoder_construct(self):

map_size = K.int_shape(self.encoder.layers[-2].output)[1:-1]

# print(type(map_size))

z_in = Input(shape=K.int_shape(self.encoder.output)[1:])

z = z_in

z_dim = self.dim

z = Dense(np.prod(map_size) * z_dim)(z)

z = Reshape(map_size + (z_dim,))(z)

z = Conv2DTranspose(z_dim // 2, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = Conv2DTranspose(z_dim // 4, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = Conv2DTranspose(z_dim // 8, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = Conv2DTranspose(z_dim // 16, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)

z = BatchNormalization()(z)

z = Activation('relu')(z)

z = Conv2DTranspose(3, kernel_size=(5, 5), strides=(2, 2), padding='SAME')(z)

z = Activation('tanh')(z)

decoder = Model(z_in, z)

return decoder

def build_ae(self):

input_x = Input(shape=(self.img_dim, self.img_dim, 3))

x = input_x

for i in range(1, len(self.encoder.layers)):

x = self.encoder.layers[i](x)

for j in range(1, len(self.decoder.layers)):

x = self.decoder.layers[j](x)

y = x

auto_encoder = Model(input_x, y)

return auto_encoder

模型A就是这里的encoder,模型B就是这里的decoder。所以,连接的精髓在build_ae()函数,直接用for循环读出各层,然后一层一层重新构造新的模型,从而实现连接效果。因为keras也是基于图的框架,这个操作并不会很费时,因为没有实际地计算。

补充知识:keras得到每层的系数

使用keras搭建好一个模型,训练好,怎么得到每层的系数呢:

weights = np.array(model.get_weights())

print(weights)

print(weights[0].shape)

print(weights[1].shape)

这样系数就被存放到一个np中了。

以上这篇Keras实现将两个模型连接到一起就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 Keras实现将两个模型连接到一起 的全部内容, 来源链接: utcz.com/z/328017.html

回到顶部