pytorch构建网络模型的4种方法

利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。

假设构建一个网络模型如下:

卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层

首先导入几种方法用到的包:

import torch

import torch.nn.functional as F

from collections import OrderedDict

第一种方法

# Method 1 -----------------------------------------

class Net1(torch.nn.Module):

def __init__(self):

super(Net1, self).__init__()

self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)

self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)

self.dense2 = torch.nn.Linear(128, 10)

def forward(self, x):

x = F.max_pool2d(F.relu(self.conv(x)), 2)

x = x.view(x.size(0), -1)

x = F.relu(self.dense1(x))

x = self.dense2(x)

return x

print("Method 1:")

model1 = Net1()

print(model1)

这种方法比较常用,早期的教程通常就是使用这种方法。

第二种方法

# Method 2 ------------------------------------------

class Net2(torch.nn.Module):

def __init__(self):

super(Net2, self).__init__()

self.conv = torch.nn.Sequential(

torch.nn.Conv2d(3, 32, 3, 1, 1),

torch.nn.ReLU(),

torch.nn.MaxPool2d(2))

self.dense = torch.nn.Sequential(

torch.nn.Linear(32 * 3 * 3, 128),

torch.nn.ReLU(),

torch.nn.Linear(128, 10)

)

def forward(self, x):

conv_out = self.conv1(x)

res = conv_out.view(conv_out.size(0), -1)

out = self.dense(res)

return out

print("Method 2:")

model2 = Net2()

print(model2)

这种方法利用torch.nn.Sequential()容器进行快速搭建,模型的各层被顺序添加到容器中。缺点是每层的编号是默认的阿拉伯数字,不易区分。

第三种方法:

# Method 3 -------------------------------

class Net3(torch.nn.Module):

def __init__(self):

super(Net3, self).__init__()

self.conv=torch.nn.Sequential()

self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))

self.conv.add_module("relu1",torch.nn.ReLU())

self.conv.add_module("pool1",torch.nn.MaxPool2d(2))

self.dense = torch.nn.Sequential()

self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))

self.dense.add_module("relu2",torch.nn.ReLU())

self.dense.add_module("dense2",torch.nn.Linear(128, 10))

def forward(self, x):

conv_out = self.conv1(x)

res = conv_out.view(conv_out.size(0), -1)

out = self.dense(res)

return out

print("Method 3:")

model3 = Net3()

print(model3)

这种方法是对第二种方法的改进:通过add_module()添加每一层,并且为每一层增加了一个单独的名字。 

第四种方法:

# Method 4 ------------------------------------------

class Net4(torch.nn.Module):

def __init__(self):

super(Net4, self).__init__()

self.conv = torch.nn.Sequential(

OrderedDict(

[

("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),

("relu1", torch.nn.ReLU()),

("pool", torch.nn.MaxPool2d(2))

]

))

self.dense = torch.nn.Sequential(

OrderedDict([

("dense1", torch.nn.Linear(32 * 3 * 3, 128)),

("relu2", torch.nn.ReLU()),

("dense2", torch.nn.Linear(128, 10))

])

)

def forward(self, x):

conv_out = self.conv1(x)

res = conv_out.view(conv_out.size(0), -1)

out = self.dense(res)

return out

print("Method 4:")

model4 = Net4()

print(model4)

是第三种方法的另外一种写法,通过字典的形式添加每一层,并且设置单独的层名称。

完整代码:

import torch

import torch.nn.functional as F

from collections import OrderedDict

# Method 1 -----------------------------------------

class Net1(torch.nn.Module):

def __init__(self):

super(Net1, self).__init__()

self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)

self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)

self.dense2 = torch.nn.Linear(128, 10)

def forward(self, x):

x = F.max_pool2d(F.relu(self.conv(x)), 2)

x = x.view(x.size(0), -1)

x = F.relu(self.dense1(x))

x = self.dense2()

return x

print("Method 1:")

model1 = Net1()

print(model1)

# Method 2 ------------------------------------------

class Net2(torch.nn.Module):

def __init__(self):

super(Net2, self).__init__()

self.conv = torch.nn.Sequential(

torch.nn.Conv2d(3, 32, 3, 1, 1),

torch.nn.ReLU(),

torch.nn.MaxPool2d(2))

self.dense = torch.nn.Sequential(

torch.nn.Linear(32 * 3 * 3, 128),

torch.nn.ReLU(),

torch.nn.Linear(128, 10)

)

def forward(self, x):

conv_out = self.conv1(x)

res = conv_out.view(conv_out.size(0), -1)

out = self.dense(res)

return out

print("Method 2:")

model2 = Net2()

print(model2)

# Method 3 -------------------------------

class Net3(torch.nn.Module):

def __init__(self):

super(Net3, self).__init__()

self.conv=torch.nn.Sequential()

self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))

self.conv.add_module("relu1",torch.nn.ReLU())

self.conv.add_module("pool1",torch.nn.MaxPool2d(2))

self.dense = torch.nn.Sequential()

self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))

self.dense.add_module("relu2",torch.nn.ReLU())

self.dense.add_module("dense2",torch.nn.Linear(128, 10))

def forward(self, x):

conv_out = self.conv1(x)

res = conv_out.view(conv_out.size(0), -1)

out = self.dense(res)

return out

print("Method 3:")

model3 = Net3()

print(model3)

# Method 4 ------------------------------------------

class Net4(torch.nn.Module):

def __init__(self):

super(Net4, self).__init__()

self.conv = torch.nn.Sequential(

OrderedDict(

[

("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),

("relu1", torch.nn.ReLU()),

("pool", torch.nn.MaxPool2d(2))

]

))

self.dense = torch.nn.Sequential(

OrderedDict([

("dense1", torch.nn.Linear(32 * 3 * 3, 128)),

("relu2", torch.nn.ReLU()),

("dense2", torch.nn.Linear(128, 10))

])

)

def forward(self, x):

conv_out = self.conv1(x)

res = conv_out.view(conv_out.size(0), -1)

out = self.dense(res)

return out

print("Method 4:")

model4 = Net4()

print(model4)

以上是 pytorch构建网络模型的4种方法 的全部内容, 来源链接: utcz.com/z/319188.html

回到顶部