对Pandas MultiIndex(多重索引)详解

创建多重索引

In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index)

In [17]: df

Out[17]:

first bar baz foo qux \

second one two one two one two one

A 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299

B 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127

C -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.974466

first

second two

A -0.226169

B -1.436737

C -2.006747

获得索引信息

get_level_values

In [23]: index.get_level_values(0)

Out[23]: Index(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], dtype='object', name='first')

In [24]: index.get_level_values('second')

Out[24]: Index(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], dtype='object', name='second')

基本索引

In [25]: df['bar']

Out[25]:

second one two

A 0.895717 0.805244

B 0.410835 0.813850

C -1.413681 1.607920

In [26]: df['bar', 'one']

Out[26]:

A 0.895717

B 0.410835

C -1.413681

Name: (bar, one), dtype: float64

In [27]: df['bar']['one']

Out[27]:

A 0.895717

B 0.410835

C -1.413681

Name: one, dtype: float64

使用reindex对齐数据

数据准备

In [11]: s = pd.Series(np.random.randn(8), index=arrays)

In [12]: s

Out[12]:

bar one -0.861849

two -2.104569

baz one -0.494929

two 1.071804

foo one 0.721555

two -0.706771

qux one -1.039575

two 0.271860

dtype: float64

s序列加(0~-2)索引的值,因为s[:-2]没有最后两个的索引,所以为NaN.s[::2]意思是步长为1.

In [34]: s + s[:-2]

Out[34]:

bar one -1.723698

two -4.209138

baz one -0.989859

two 2.143608

foo one 1.443110

two -1.413542

qux one NaN

two NaN

dtype: float64

In [35]: s + s[::2]

Out[35]:

bar one -1.723698

two NaN

baz one -0.989859

two NaN

foo one 1.443110

two NaN

qux one -2.079150

two NaN

dtype: float64

以上这篇对Pandas MultiIndex(多重索引)详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 对Pandas MultiIndex(多重索引)详解 的全部内容, 来源链接: utcz.com/z/318870.html

回到顶部