python的常见矩阵运算(小结)

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。

1.numpy的导入和使用

from numpy import *;#导入numpy的库函数

import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。

2.矩阵的创建

由一维或二维数据创建矩阵

from numpy import *;

a1=array([1,2,3]);

a1=mat(a1);

创建常见的矩阵

data1=mat(zeros((3,3)));

#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)

data2=mat(ones((2,4)));

#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int

data3=mat(random.rand(2,2));

#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix

data4=mat(random.randint(10,size=(3,3)));

#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数

data5=mat(random.randint(2,8,size=(2,5));

#产生一个2-8之间的随机整数矩阵

data6=mat(eye(2,2,dtype=int));

#产生一个2*2的对角矩阵

a1=[1,2,3];

a2=mat(diag(a1));

#生成一个对角线为1、2、3的对角矩阵

3.常见的矩阵运算

1. 矩阵相乘

a1=mat([1,2]);

a2=mat([[1],[2]]);

a3=a1*a2;

#1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵

2. 矩阵点乘

矩阵对应元素相乘

a1=mat([1,1]);

a2=mat([2,2]);

a3=multiply(a1,a2);

矩阵点乘

a1=mat([2,2]);

a2=a1*2;

3.矩阵求逆,转置

矩阵求逆

a1=mat(eye(2,2)*0.5);

a2=a1.I;

#求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵

矩阵转置

a1=mat([[1,1],[0,0]]);

a2=a1.T;

4.计算矩阵对应行列的最大、最小值、和。

a1=mat([[1,1],[2,3],[4,2]]);

计算每一列、行的和

a2=a1.sum(axis=0);//列和,这里得到的是1*2的矩阵

a3=a1.sum(axis=1);//行和,这里得到的是3*1的矩阵

a4=sum(a1[1,:]);//计算第一行所有列的和,这里得到的是一个数值

计算最大、最小值和索引

a1.max();//计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值

a2=max(a1[:,1]);//计算第二列的最大值,这里得到的是一个1*1的矩阵

a1[1,:].max();//计算第二行的最大值,这里得到的是一个一个数值

np.max(a1,0);//计算所有列的最大值,这里使用的是numpy中的max函数

np.max(a1,1);//计算所有行的最大值,这里得到是一个矩阵

np.argmax(a1,0);//计算所有列的最大值对应在该列中的索引

np.argmax(a1[1,:]);//计算第二行中最大值对应在改行的索引

5.矩阵的分隔和合并

矩阵的分隔,同列表和数组的分隔一致。

a=mat(ones((3,3)));

b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素

矩阵的合并

a=mat(ones((2,2)));

b=mat(eye(2));

c=vstack((a,b));//按列合并,即增加行数

d=hstack((a,b));//按行合并,即行数不变,扩展列数

4.矩阵、列表、数组的转换

列表可以修改,并且列表中元素可以使不同类型的数据,如下:

l1=[[1],'hello',3];

numpy中数组,同一个数组中所有元素必须为同一个类型,有几个常见的属性:

a=array([[2],[1]]);

dimension=a.ndim;

m,n=a.shape;

number=a.size;//元素总个数

str=a.dtype;//元素的类型

numpy中的矩阵也有与数组常见的几个属性。

它们之间的转换:

a1=[[1,2],[3,2],[5,2]];//列表

a2=array(a1);//将列表转换成二维数组

a3=array(a1);//将列表转化成矩阵

a4=array(a3);//将矩阵转换成数组

a5=a3.tolist();//将矩阵转换成列表

a6=a2.tolist();//将数组转换成列表

这里可以发现三者之间的转换是非常简单的,这里需要注意的是,当列表是一维的时候,将它转换成数组和矩阵后,再通过tolist()转换成列表是不相同的,需要做一些小小的修改。如下:

a1=[1,2,3];

a2=array(a1);

a3=mat(a1);

a4=a2.tolist();//这里得到的是[1,2,3]

a5=a3.tolist();//这里得到的是[[1,2,3]]

a6=(a4 == a5);//a6=False

a7=(a4 is a5[0]);//a7=True,a5[0]=[1,2,3]

矩阵转换成数值,存在以下一种情况:

dataMat=mat([1]);

val=dataMat[0,0];//这个时候获取的就是矩阵的元素的数值,而不再是矩阵的类型

以上是 python的常见矩阵运算(小结) 的全部内容, 来源链接: utcz.com/z/318440.html

回到顶部