python 实现非极大值抑制算法(Non-maximum suppression, NMS)

NMS 算法在目标检测,目标定位领域有较广泛的应用。

算法原理

非极大值抑制算法(Non-maximum suppression, NMS)的本质是搜索局部极大值,抑制非极大值元素。

算法的作用

当算法对一个目标产生了多个候选框的时候,选择 score 最高的框,并抑制其他对于改目标的候选框

适用场景

一幅图中有多个目标(如果只有一个目标,那么直接取 score 最高的候选框即可)。

算法的输入

算法对一幅图产生的所有的候选框,以及每个框对应的 score (可以用一个 5 维数组 dets 表示,前 4 维表示四个角的坐标,第 5 维表示分数),阈值 thresh。

算法的输出

正确的候选框组(dets 的一个子集)。

细节

  • 起始,设所有的框都没有被抑制,所有框按照 score 从大到小排序。
  • 从第 0 个框(分数最高)开始遍历:对于每一个框,如果该框没有被抑制,就将所有与它 IoU 大于 thresh 的框设为抑制。
  • 返回没被抑制的框。

参考代码

# --------------------------------------------------------

# Fast R-CNN

# Copyright (c) 2015 Microsoft

# Licensed under The MIT License [see LICENSE for details]

# Written by Ross Girshick

# --------------------------------------------------------

import numpy as np

cimport numpy as np

cdef inline np.float32_t max(np.float32_t a, np.float32_t b):

return a if a >= b else b

cdef inline np.float32_t min(np.float32_t a, np.float32_t b):

return a if a <= b else b

def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh):

cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0]

cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1]

cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2]

cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3]

cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4]

cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1)

cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1]

cdef int ndets = dets.shape[0]

cdef np.ndarray[np.int_t, ndim=1] suppressed = \

np.zeros((ndets), dtype=np.int)

# nominal indices

cdef int _i, _j

# sorted indices

cdef int i, j

# temp variables for box i's (the box currently under consideration)

cdef np.float32_t ix1, iy1, ix2, iy2, iarea

# variables for computing overlap with box j (lower scoring box)

cdef np.float32_t xx1, yy1, xx2, yy2

cdef np.float32_t w, h

cdef np.float32_t inter, ovr

keep = []

for _i in range(ndets):

i = order[_i]

if suppressed[i] == 1:

continue

keep.append(i)

ix1 = x1[i]

iy1 = y1[i]

ix2 = x2[i]

iy2 = y2[i]

iarea = areas[i]

for _j in range(_i + 1, ndets):

j = order[_j]

if suppressed[j] == 1:

continue

xx1 = max(ix1, x1[j])

yy1 = max(iy1, y1[j])

xx2 = min(ix2, x2[j])

yy2 = min(iy2, y2[j])

w = max(0.0, xx2 - xx1 + 1)

h = max(0.0, yy2 - yy1 + 1)

inter = w * h

ovr = inter / (iarea + areas[j] - inter)

if ovr >= thresh:

suppressed[j] = 1

return keep

以上是 python 实现非极大值抑制算法(Non-maximum suppression, NMS) 的全部内容, 来源链接: utcz.com/z/317714.html

回到顶部