tensorflow建立一个简单的神经网络的方法

本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。

如何添加一层网络

代码如下:

def add_layer(inputs, in_size, out_size, activation_function=None):

# add one more layer and return the output of this layer

Weights = tf.Variable(tf.random_normal([in_size, out_size]))

biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)

Wx_plus_b = tf.matmul(inputs, Weights) + biases

if activation_function is None:

outputs = Wx_plus_b

else:

outputs = activation_function(Wx_plus_b)

return outputs

注意该函数中是xW+b,而不是Wx+b。所以要注意乘法的顺序。x应该定义为[类别数量, 数据数量], W定义为[数据类别,类别数量]。

创建一些数据

# Make up some real data

x_data = np.linspace(-1,1,300)[:, np.newaxis]

noise = np.random.normal(0, 0.05, x_data.shape)

y_data = np.square(x_data) - 0.5 + noise

numpy的linspace函数能够产生等差数列。start,stop决定等差数列的起止值。endpoint参数指定包不包括终点值。

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)[source]

Return evenly spaced numbers over a specified interval.

Returns num evenly spaced samples, calculated over the interval [start, stop].

noise函数为添加噪声所用,这样二次函数的点不会与二次函数曲线完全重合。

numpy的newaxis可以新增一个维度而不需要重新创建相应的shape在赋值,非常方便,如上面的例子中就将x_data从一维变成了二维。

添加占位符,用作输入

# define placeholder for inputs to network

xs = tf.placeholder(tf.float32, [None, 1])

ys = tf.placeholder(tf.float32, [None, 1])

添加隐藏层和输出层

# add hidden layer

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)

# add output layer

prediction = add_layer(l1, 10, 1, activation_function=None)

计算误差,并用梯度下降使得误差最小

# the error between prediciton and real data

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

完整代码如下:

from __future__ import print_function

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):

# add one more layer and return the output of this layer

Weights = tf.Variable(tf.random_normal([in_size, out_size]))

biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)

Wx_plus_b = tf.matmul(inputs, Weights) + biases

if activation_function is None:

outputs = Wx_plus_b

else:

outputs = activation_function(Wx_plus_b)

return outputs

# Make up some real data

x_data = np.linspace(-1,1,300)[:, np.newaxis]

noise = np.random.normal(0, 0.05, x_data.shape)

y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network

xs = tf.placeholder(tf.float32, [None, 1])

ys = tf.placeholder(tf.float32, [None, 1])

# add hidden layer

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)

# add output layer

prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),

reduction_indices=[1]))

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

# important step

init = tf.initialize_all_variables()

sess = tf.Session()

sess.run(init)

# plot the real data

fig = plt.figure()

ax = fig.add_subplot(1,1,1)

ax.scatter(x_data, y_data)

plt.ion()

plt.show()

for i in range(1000):

# training

sess.run(train_step, feed_dict={xs: x_data, ys: y_data})

if i % 50 == 0:

# to visualize the result and improvement

try:

ax.lines.remove(lines[0])

except Exception:

pass

prediction_value = sess.run(prediction, feed_dict={xs: x_data})

# plot the prediction

lines = ax.plot(x_data, prediction_value, 'r-', lw=5)

plt.pause(0.1)

运行结果:

以上是 tensorflow建立一个简单的神经网络的方法 的全部内容, 来源链接: utcz.com/z/313400.html

回到顶部