在pytorch中动态调整优化器的学习率方式

在深度学习中,经常需要动态调整学习率,以达到更好地训练效果,本文纪录在pytorch中的实现方法,其优化器实例为SGD优化器,其他如Adam优化器同样适用。

一般来说,在以SGD优化器作为基本优化器,然后根据epoch实现学习率指数下降,代码如下:

step = [10,20,30,40]

base_lr = 1e-4

sgd_opt = torch.optim.SGD(model.parameters(), lr=base_lr, nesterov=True, momentum=0.9)

def adjust_lr(epoch):

lr = base_lr * (0.1 ** np.sum(epoch >= np.array(step)))

for params_group in sgd_opt.param_groups:

params_group['lr'] = lr

return lr

只需要在每个train的epoch之前使用这个函数即可。

for epoch in range(60):

model.train()

adjust_lr(epoch)

for ind, each in enumerate(train_loader):

mat, label = each

...

补充知识:Pytorch框架下应用Bi-LSTM实现汽车评论文本关键词抽取

需要调用的模块及整体Bi-lstm流程

import torch

import pandas as pd

import numpy as np

from tensorflow import keras

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

from torch.utils.data import DataLoader

from torch.utils.data import TensorDataset

import gensim

from sklearn.model_selection import train_test_split

class word_extract(nn.Module):

def __init__(self,d_model,embedding_matrix):

super(word_extract, self).__init__()

self.d_model=d_model

self.embedding=nn.Embedding(num_embeddings=len(embedding_matrix),embedding_dim=200)

self.embedding.weight.data.copy_(embedding_matrix)

self.embedding.weight.requires_grad=False

self.lstm1=nn.LSTM(input_size=200,hidden_size=50,bidirectional=True)

self.lstm2=nn.LSTM(input_size=2*self.lstm1.hidden_size,hidden_size=50,bidirectional=True)

self.linear=nn.Linear(2*self.lstm2.hidden_size,4)

def forward(self,x):

w_x=self.embedding(x)

first_x,(first_h_x,first_c_x)=self.lstm1(w_x)

second_x,(second_h_x,second_c_x)=self.lstm2(first_x)

output_x=self.linear(second_x)

return output_x

将文本转换为数值形式

def trans_num(word2idx,text):

text_list=[]

for i in text:

s=i.rstrip().replace('\r','').replace('\n','').split(' ')

numtext=[word2idx[j] if j in word2idx.keys() else word2idx['_PAD'] for j in s ]

text_list.append(numtext)

return text_list

将Gensim里的词向量模型转为矩阵形式,后续导入到LSTM模型中

def establish_word2vec_matrix(model): #负责将数值索引转为要输入的数据

word2idx = {"_PAD": 0} # 初始化 `[word : token]` 字典,后期 tokenize 语料库就是用该词典。

num2idx = {0: "_PAD"}

vocab_list = [(k, model.wv[k]) for k, v in model.wv.vocab.items()]

# 存储所有 word2vec 中所有向量的数组,留意其中多一位,词向量全为 0, 用于 padding

embeddings_matrix = np.zeros((len(model.wv.vocab.items()) + 1, model.vector_size))

for i in range(len(vocab_list)):

word = vocab_list[i][0]

word2idx[word] = i + 1

num2idx[i + 1] = word

embeddings_matrix[i + 1] = vocab_list[i][1]

embeddings_matrix = torch.Tensor(embeddings_matrix)

return embeddings_matrix, word2idx, num2idx

训练过程

def train(model,epoch,learning_rate,batch_size,x, y, val_x, val_y):

optimizor = optim.Adam(model.parameters(), lr=learning_rate)

data = TensorDataset(x, y)

data = DataLoader(data, batch_size=batch_size)

for i in range(epoch):

for j, (per_x, per_y) in enumerate(data):

output_y = model(per_x)

loss = F.cross_entropy(output_y.view(-1,output_y.size(2)), per_y.view(-1))

optimizor.zero_grad()

loss.backward()

optimizor.step()

arg_y=output_y.argmax(dim=2)

fit_correct=(arg_y==per_y).sum()

fit_acc=fit_correct.item()/(per_y.size(0)*per_y.size(1))

print('##################################')

print('第{}次迭代第{}批次的训练误差为{}'.format(i + 1, j + 1, loss), end=' ')

print('第{}次迭代第{}批次的训练准确度为{}'.format(i + 1, j + 1, fit_acc))

val_output_y = model(val_x)

val_loss = F.cross_entropy(val_output_y.view(-1,val_output_y.size(2)), val_y.view(-1))

arg_val_y=val_output_y.argmax(dim=2)

val_correct=(arg_val_y==val_y).sum()

val_acc=val_correct.item()/(val_y.size(0)*val_y.size(1))

print('第{}次迭代第{}批次的预测误差为{}'.format(i + 1, j + 1, val_loss), end=' ')

print('第{}次迭代第{}批次的预测准确度为{}'.format(i + 1, j + 1, val_acc))

torch.save(model,'./extract_model.pkl')#保存模型

主函数部分

if __name__ =='__main__':

#生成词向量矩阵

word2vec = gensim.models.Word2Vec.load('./word2vec_model')

embedding_matrix,word2idx,num2idx=establish_word2vec_matrix(word2vec)#输入的是词向量模型

#

train_data=pd.read_csv('./数据.csv')

x=list(train_data['文本'])

# 将文本从文字转化为数值,这部分trans_num函数你需要自己改动去适应你自己的数据集

x=trans_num(word2idx,x)

#x需要先进行填充,也就是每个句子都是一样长度,不够长度的以0来填充,填充词单独分为一类

# #也就是说输入的x是固定长度的数值列表,例如[50,123,1850,21,199,0,0,...]

#输入的y是[2,0,1,0,0,1,3,3,3,3,3,.....]

#填充代码你自行编写,以下部分是针对我的数据集

x=keras.preprocessing.sequence.pad_sequences(

x,maxlen=60,value=0,padding='post',

)

y=list(train_data['BIO数值'])

y_text=[]

for i in y:

s=i.rstrip().split(' ')

numtext=[int(j) for j in s]

y_text.append(numtext)

y=y_text

y=keras.preprocessing.sequence.pad_sequences(

y,maxlen=60,value=3,padding='post',

)

# 将数据进行划分

fit_x,val_x,fit_y,val_y=train_test_split(x,y,train_size=0.8,test_size=0.2)

fit_x=torch.LongTensor(fit_x)

fit_y=torch.LongTensor(fit_y)

val_x=torch.LongTensor(val_x)

val_y=torch.LongTensor(val_y)

#开始应用

w_extract=word_extract(d_model=200,embedding_matrix=embedding_matrix)

train(model=w_extract,epoch=5,learning_rate=0.001,batch_size=50,

x=fit_x,y=fit_y,val_x=val_x,val_y=val_y)#可以自行改动参数,设置学习率,批次,和迭代次数

w_extract=torch.load('./extract_model.pkl')#加载保存好的模型

pred_val_y=w_extract(val_x).argmax(dim=2)

以上这篇在pytorch中动态调整优化器的学习率方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

以上是 在pytorch中动态调整优化器的学习率方式 的全部内容, 来源链接: utcz.com/z/311897.html

回到顶部