如何根据损失值告诉Keras停止训练?

目前,我使用以下代码:

callbacks = [

EarlyStopping(monitor='val_loss', patience=2, verbose=0),

ModelCheckpoint(kfold_weights_path, monitor='val_loss', save_best_only=True, verbose=0),

]

model.fit(X_train.astype('float32'), Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

shuffle=True, verbose=1, validation_data=(X_valid, Y_valid),

callbacks=callbacks)

它告诉Keras,如果损失在2个时期内没有改善,就停止训练。但是我要在损失小于某个恒定的“ THR”后停止训练:

if val_loss < THR:

break

我在文档中已经看到有可能进行自己的回调:http :

//keras.io/callbacks/ 但没有找到如何停止训练过程的方法。我需要个建议。

回答:

我找到了答案。我调查了Keras的资源,并找到了EarlyStopping的代码。我基于此进行了自己的回调:

class EarlyStoppingByLossVal(Callback):

def __init__(self, monitor='val_loss', value=0.00001, verbose=0):

super(Callback, self).__init__()

self.monitor = monitor

self.value = value

self.verbose = verbose

def on_epoch_end(self, epoch, logs={}):

current = logs.get(self.monitor)

if current is None:

warnings.warn("Early stopping requires %s available!" % self.monitor, RuntimeWarning)

if current < self.value:

if self.verbose > 0:

print("Epoch %05d: early stopping THR" % epoch)

self.model.stop_training = True

和用法:

callbacks = [

EarlyStoppingByLossVal(monitor='val_loss', value=0.00001, verbose=1),

# EarlyStopping(monitor='val_loss', patience=2, verbose=0),

ModelCheckpoint(kfold_weights_path, monitor='val_loss', save_best_only=True, verbose=0),

]

model.fit(X_train.astype('float32'), Y_train, batch_size=batch_size, nb_epoch=nb_epoch,

shuffle=True, verbose=1, validation_data=(X_valid, Y_valid),

callbacks=callbacks)

以上是 如何根据损失值告诉Keras停止训练? 的全部内容, 来源链接: utcz.com/qa/419586.html

回到顶部