TensorFlow:将float64张量转换为float32

我正在尝试使用:train =

optimizer.minimize(loss)但是标准优化器无法使用tf.float64。因此,我想截断loss从fromtf.float64到only

tf.float32

Traceback (most recent call last):

File "q4.py", line 85, in <module>

train = optimizer.minimize(loss)

File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 190, in minimize

colocate_gradients_with_ops=colocate_gradients_with_ops)

File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 229, in compute_gradients

self._assert_valid_dtypes([loss])

File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 354, in _assert_valid_dtypes

dtype, t.name, [v for v in valid_dtypes]))

ValueError: Invalid type tf.float64 for Add_1:0, expected: [tf.float32].

回答:

简短的回答是,你可以将张量从转换tf.float64tf.float32使用tf.cast()OP:

loss = tf.cast(loss, tf.float32)

更长的答案是,这不能解决优化器的所有问题。(缺少对支持tf.float64的已知问题。)优化器要求

您要优化的所有对象也必须具有type tf.float32

以上是 TensorFlow:将float64张量转换为float32 的全部内容, 来源链接: utcz.com/qa/404227.html

回到顶部